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Summary. A new approach to clustering multivariate data, based on a multilevel linear mixed
model, is proposed. A key feature of the model is that observations from the same cluster are
correlated, because they share cluster-specific random effects.The inclusion of cluster-specific
random effects allows parsimonious departure from an assumed base model for cluster mean
profiles.This departure is captured statistically via the posterior expectation, or best linear unbi-
ased predictor. One of the parameters in the model is the true underlying partition of the data,
and the posterior distribution of this parameter, which is known up to a normalizing constant, is
used to cluster the data. The problem of finding partitions with high posterior probability is not
amenable to deterministic methods such as the EM algorithm. Thus, we propose a stochastic
search algorithm that is driven by a Markov chain that is a mixture of two Metropolis–Hastings
algorithms—one that makes small scale changes to individual objects and another that per-
forms large scale moves involving entire clusters. The methodology proposed is fundamentally
different from the well-known finite mixture model approach to clustering, which does not explic-
itly include the partition as a parameter, and involves an independent and identically distributed
structure.

Keywords: Bayesian model; Best linear unbiased predictor; Cluster analysis; Linear mixed
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1. Introduction

Clustering and classification are some of the most fundamental data analysis tools in use today.
Many standard clustering algorithms are based on the assumption that the measurements to
be clustered are realizations of random vectors from some parametric statistical model. These
models usually place no restriction on the mean structure via covariates or otherwise. However,
in many applications there is potential for parsimonious representation of the mean. For exam-
ple, microarray experiments often yield time-series-type data where each p-dimensional vector
consists of measurements at p different time points. In such cases, it seems natural to model the
mean via regression, especially when tempered with the ability to detect clusters that are well
defined but deviate from a specified parametric form. We provide general clustering methods
that achieve this balance, i.e. they allow us to exploit covariate information without over-
emphasizing conformance with a model. Related ideas have been considered in some recent
works including Serban and Wasserman (2005), Hitchcock et al. (2006), McLachlan et al. (2004),
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Celeux et al. (2005) and Heard et al. (2006), whose model is a special case of the model that is
considered here.

The basic clustering problem is simple to state. Given a set of n distinguishable objects, we
wish to distribute the objects into groups or clusters in such a way that the objects within each
group are similar whereas the groups themselves are different. Let the integers Nn :={1, 2, . . . , n}
serve as labels for our n distinguishable objects. In mathematical terms, the output of a clus-
tering algorithm is a partition of Nn, i.e. an unordered collection of non-empty subsets of Nn.
Unfortunately, it is not always clear exactly how to quantify the similarity of objects within
clusters nor the difference between clusters. However, suppose that, in addition to the n objects,
there is an objective function π : Pn →R+, where Pn denotes the set of all possible partitions of
Nn, which assigns a score to each partition reflecting the extent to which it achieves the overall
clustering goal that was described above. In this case, the cluster analysis is tantamount to the
straightforward optimization problem of finding the partition with the highest score. In this
paper we propose a general method for constructing objective functions, through the use of
linear mixed models, that take into account covariate information.

Suppose that the objects to be clustered are n p-dimensional vectors denoted by Yi =
.Yi1, . . . , Yip/T, i=1, 2, . . . , n. The standard, model-based approach to clustering (see, for exam-
ple, McLachlan and Basford (1988) and McLachlan and Peel (2000)) begins with the assumption
that these n vectors are realizations of n independent and identically distributed random vectors
from the K -component mixture density

K∑
k=1

τk f.·; θk/, .1/

where K is a fixed positive integer in Nn, τk ∈ .0, 1/, ΣK
k=1τk =1, {f.·; θ/ : θ∈Θ} is a parametric

family of densities on Rp and θk ∈ Θ is an unknown vector of parameters that is associated
with the kth component. A partition of the data is typically obtained as a by-product of an
EM algorithm that is designed to find the maximum likelihood estimates of the parameters,
{.τk/K

k=1, .θk/K
k=1}. The missing data are n multinomial K -vectors, W1, . . . , Wn, indicating the

origin of each Yi. A partition of the data is obtained through the so-called maximum likelihood
classification rule, which assigns observation i to the mixture component that is associated with
the largest co-ordinate of the conditional expectation of Wi calculated during the final E-step.

The motivation for using expression (1) as the basis for cluster analysis must surely be the fact
that this model would be correct if the data were actually a random sample from a heterogeneous
population with K groups whose sizes are proportional to the τi. However, in many applications
of cluster analysis this sampling scheme is quite unrealistic. We contend that a more realistic
assumption is that there is some fixed unknown partition of Nn, ω, that has c = c.ω/ clusters
denoted by C1, . . . , Cc and that the data are a realization from a density of the form

f.y|θ1, . . . , θc,ω/=
c∏

k=1

∏
j∈Ck

f.yj|θk/: .2/

Of course, ∪c
k=1Ck = Nn and Ci ∩ Cj =∅ whenever i �= j. Note that, unlike the mixture model,

model (2) contains a parameter ω that is directly relevant to the basic clustering problem.
Another standard approach to clustering is to maximize equation (2) in .ω, θ/, to call the result
.ω̂, θ̂/, and then to use ω̂ as the partition (Scott and Symons, 1971; Symons, 1981; Banfield and
Raftery, 1993). In this context, equation (2) is called the classification likelihood.

We propose an objective function that is based on a generalization of model (2) that takes
into account covariate information and allows for dependence among data vectors in the same



Clustering 121

cluster. To be specific, our objective function is the posterior distribution π.ω|y1, . . . , yn/, which
is constructed by placing priors on all the parameters in the model and marginalizing over all
parameters except ω. This general approach was suggested several decades ago in Binder (1978).
However, stochastic search methods for finding partitions with high posterior probability were
not feasible at that time. Also, the linear mixed model formulation that is proposed here is a
generalization of that proposed in Heard et al. (2006). In particular, our model allows for the
data vectors within a cluster to be correlated, which allows for parsimonious representation of
the cluster means through the use of penalized splines.

Finding the partitions that yield the highest values of the objective function is a challenging
optimization problem. The reason is that the total number of partitions of Nn, Bn = #.Pn/,
which is called the Bell number (Stanley (1997), page 33), grows extremely rapidly with n; for
example, B40 =1:6×1035 and B100 =4:8×10115. Thus, even for moderately large n, it is compu-
tationally infeasible to enumerate Pn. Not surprisingly, standard clustering algorithms typically
fail to optimize any objective function globally.

A second contribution of this paper is the development of a stochastic search algorithm for
finding the maximizer of the objective function. The basic idea is to construct a Metropolis–
Hastings (MH) Markov chain whose stationary distribution is proportional to the objective
function. Of course, the key to success with the MH algorithm is the choice of the candidate
transition kernel. We propose a mixture of two MH algorithms—one that makes small scale
changes to individual objects and another that performs large scale moves involving entire
clusters. Thus, our approach is contrary to the claim that was made in Heard et al. (2006),
section 7, that ‘it is rather difficult to construct efficient dimension-changing moves in the vast
space of possible clusterings’. They used a deterministic, greedy, agglomerative hierarchical
algorithm.

In general, partitioning the data by finding the maximizer of an objective function alleviates
several well-known difficulties that are associated with the standard clustering procedure. For
example, one practical problem with the standard, EM-based procedure for the mixture model
that was described above is that K must be fixed a priori. Fraley and Raftery (2002) suggested
optimizing the Bayes information criterion to solve this problem, but this means that the EM
algorithm must be run once for every possible value of K that the user wishes to consider.
Although this may not be overly burdensome from a computational standpoint, it is not very
satisfying. In contrast, our objective function can be evaluated at any given partition, regardless
of the number of clusters, and hence the fixed K problem is not an issue.

One might argue that the methods that are proposed in this paper are computationally bur-
densome relative to more conventional clustering algorithms because of the stochastic search
ingredient. However, it is well known that methods such as the K -means and the mixture
model-based approach are sensitive to starting values. For example, the K -means algorithm
can converge to substantially different solutions when rerun with a different random-number
generator seed. Different solutions resulting from different starting values must be compared,
presumably by using an objective function (such as a least squares criterion for K -means). Since
it is impossible to rerun the algorithm from every possible starting point, the only way to gain
confidence in the solutions that are provided by these algorithms is to perform some type of
stochastic search. This fact has been recognized by other researchers. For example, Selim and
Alsutan (1991) attempted to minimize the K -means least squares criterion by using a simulated
annealing algorithm, and Celeux and Govaert (1992) proposed two stochastic clustering meth-
ods that were based on the EM algorithm. The approach that is described in this paper can be
viewed as a formalization of this process that leads to a probability-based criterion for selecting
good partitions that is based on a flexible class of statistical models.
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The remainder of this paper is organized as follows. In Section 2, we describe the mixed
model framework that leads to a probability-based objective function for cluster analysis. Our
stochastic search procedure for maximizing the objective function is discussed in Section 3. Sec-
tion 4 contains the results of a simulation study in which the model-based algorithm proposed
is compared with the K -means method. In Section 5 we apply the method to a well-known
data set that was obtained from a microarray experiment concerning the yeast cell cycle, and a
second microarray time course data set concerning corneal wound healing in rats. We conclude
in Section 6 with some discussion.

2. Model-based objective functions

Suppose that the data vector Yi that is measured on the ith object actually consists of r replicate
profiles, i.e.

Yi = .Yi11, . . . , Yi1p, . . . , Yir1, . . . , Yirp/T = .YT
i1, . . . , YT

ir /T,

for i= 1, . . . , n. A particular setting where this data structure arises is microarray experiments
in which replicate measurements are made on each gene (Celeux et al., 2005). Of course, if there
is no replication, the second subscript can be omitted. We now describe a model for the data
vectors, Y1, . . . , Yn.

Fix ω∈Pn and let θ= .θk/
c.ω/
k=1 denote a set of cluster-specific parameter vectors where θk ∈Θ.

We assume that, given .ω, θ/, the data vectors are partitioned into c clusters according to ω and
that the clusters of data are mutually independent. However, the random vectors within each
cluster may be correlated and the joint distribution depends on the value of the corresponding
θk. In the most general case, we suppose that dependence among the Yi within a cluster, and
among replicate profiles from the same object, is induced by cluster- and object-specific random
effects. To be specific, for l ∈{1, 2}, let {gl.·|θ/ : θ∈Θ} denote a parametric family of densities,
each having support Sl ⊂ Rsl , and let {h.·|u, v, θ/ : u ∈ S1, v ∈ S2, θ ∈Θ} denote another family
with common support that is a subset of Rp. Then, for a given fixed value of .ω, θ/, the joint
density of Y = .YT

1 , . . . , YT
n /T is given by

f.y|θ,ω/=
c.ω/∏
k=1

∫
S2

[ ∏
i∈Ck

∫
S1

{
r∏

j=1
h.yij|ui, vk, θk/

}
g1.ui|θk/dui

]
g2.vk|θk/dvk: .3/

The density h may depend on known covariates, but this is suppressed notationally. This model
is similar in structure to the ‘parametric partition models’ that were used by Hartigan (1990) and
Crowley (1997) and also to a model that was used by Consonni and Veronese (1995). However, in
those models, there is within-cluster independence given .ω, θ/. Furthermore, these researchers
were not specifically concerned with cluster analysis.

The objective function that we propose is the marginal posterior of ω, which is calculated by
putting priors on ω and θ and then integrating the nuisance parameter θ out of the full posterior
distribution. Since the dimension of θ depends on ω, it is natural to use a hierarchical prior of
the form π.θ|ω/π.ω/ (see Green (1995)). As a prior for ω∈Pn, we use

πn.ω/= Γ.m/mc.ω/

Γ.n+m/

c.ω/∏
k=1

Γ.nk/, .4/

where nk = # .Ck/ and m > 0 is a parameter. This distribution was used as a prior in Crowley
(1997). Clearly, as m decreases, more weight is put on the set of partitions having a small number
of clusters. In fact, we show in Appendix A that, if ω∼πn, then the expected number of clusters
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is given by

E{c.ω/}=m
n−1∑
i=0

1
m+ i

:

This function is clearly increasing in m and has limiting values of 1 and n as m approaches 0
and ∞ respectively. Not surprisingly, the hyperparameter m is of critical importance, and use
of a default value, such as m=1, is not a good general practice. As we shall demonstrate later, a
reasonable strategy seems to be to choose m sufficiently small that the a priori expected number
of clusters is very close to its lower bound of 1.

Distribution (4) has two desirable properties. Firstly, πn.ω/ depends only on c.ω/ and n1,
n2, . . . , nc.ω/, so any two partitions that share the same values of c.ω/ and n1, n2, . . . , nc.ω/ (i.e.
differing only by a permutation of the labels {1, 2, . . . , n}) will have the same probability under
πn. For example, when n=3 the Bell number is 5 and the partitions are

ω1 :{1, 2, 3}, ω2 :{1, 2}{3}, ω3 :{1, 3}{2}, ω4 :{2, 3}{1}, ω5 :{1}{2}{3}:

.5/

In this case π3.ω2/=π3.ω3/=π3.ω4/. This property is called exchangeability (Pitman, 2005) and
is a minimal requirement in our context given that the assignment of the labels {1, 2, . . . , n} to
the n data vectors is arbitrary.

Secondly, these distributions enjoy a form of consistency that is now described. Consider the
action of deleting object n+ 1 from ω∈ Pn+1, which results in an element of Pn. Suppose that
ωÅ ∈Pn and let S ⊂Pn+1 denote the set of elements that become ωÅ when n+1 is deleted. The
consistency property is that Σω∈S πn+1.ω/=πn.ωÅ/ (see McCullagh and Yang (2006), and the
references therein). If this property were to fail, then we could, for example, have

π3[{1, 2, 3}] �=π4[{1, 2, 3, 4}]+π4[{1, 2, 3}{4}],

which seems unreasonable. Why should the prior probability that the first three data points are
in the same cluster depend on whether n=3 or n=4? We note that the priors that were used by
Consonni and Veronese (1995) and Heard et al. (2006), equation (9), satisfy the exchangeability
property, but not the consistency property.

As for π.θ|ω/, we assume that, conditional on ω, the random vectors θ1, . . . , θc are exchange-
able, but the precise form will depend on the specific structure of the model. The marginal
posterior of ω is given by

π.ω|y/∝
∫

f.y|θ,ω/π.θ|ω/πn.ω/dθ: .6/

We propose to use this marginal posterior as an objective function for cluster analysis.
In this paper, we focus on a particular version of equation (3) in which the joint distribution of

the response vectors in Ck, given .θ,ω/, is described by a linear mixed model. To avoid excessive
subscripting, assume for the time being that Ck ={1, . . . , nk}. We assume that the data vectors
corresponding to objects in the kth cluster follow the model

Yij =Xβk +Z1Ui +Z2Vk + "ij, .7/

where i=1, . . . , nk, j =1, . . . , r, the "ij are independent and identically distributed Np.0,σ2
k Ip/,

the Ui are independent and identically distributed Ns1.0,λ1σ
2
k Is1/ and Vk ∼Ns2.0,λ2σ

2
k Is2/. We

assume that the "ij, Ui and Vk are mutually independent. In terms of the general model, we have
taken gl.·; θk/ to be an sl-variate normal density with zero mean and covariance matrix λlσ

2
k Isl

,
for l ∈ {1, 2}. (Of course, if there are no replicates, the Z1Ui-term would be absent from the
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model.) The matrix X is p× q (q < p) with full column rank, βk is a q-dimensional regression
parameter and the matrix Zl is p× sl with rank sÅl � sl. In this case, θk = .βk,σ2

k /, and λ1 and λ2
are tuning parameters. (A default, data-driven, method for choosing λ1 and λ2 is proposed in
Section 4.) Specification of the model is completed by taking the prior

π.β,σ2|ω/∝
c.ω/∏
k=1

.1=σ2
k /α+1:

We now work out the exact form of expression (6) under these specific assumptions.
Let YÅ

k denote the nkrp × 1 vector consisting of all the responses in Ck stacked on top of
one another. Then, it is readily verified that YÅ

k ∼Nnkrp{.1nkr ⊗X/βk,σ2
kMk}, where Mk = Ink

⊗
A + Jnk

⊗ B, 1m is a 1-vector of length m, Jm = 1m1T
m, and the matrices A and B are given by

A= Ir ⊗ Ip +Jr ⊗λ1Z1ZT
1 and B =Jr ⊗λ2Z2ZT

2 . Let Ȳ k represent the mean profile in the kth
cluster, i.e. the average of the nkr p-dimensional vectors that comprise YÅ

k . Also define

Wk = .Ip + rλ1Z1ZT
1 +nkrλ2Z2ZT

2 /−1:

In Appendix B, it is shown that, for a fixed ω, the statistics β̂k = .XTWkX/−1XTWkȲk and

σ̂2
k = 1

nkrp

∑
i∈Ck

.Yi −1r ⊗ Ȳ k/TA−1.Yi −1r ⊗ Ȳ k/+ 1
p

.Ȳk −Xβ̂k/TWk.Ȳk −Xβ̂k/, .8/

for k = 1, . . . , c.ω/, jointly maximize equation (3). Furthermore, the joint density of the mea-
surements on the objects in cluster k can be written as

f.yÅ
k |θ,ω/=|2πσ2

kMk|−1=2 exp
[

− nkr

2σ2
k

{.βk − β̂k/TXTWkX.βk − β̂k/+pσ̂2
k}

]
: .9/

Let δ1, . . . , δp be the eigenvalues of the matrix D= .Ip + rλ1Z1ZT
1 /−1λ2Z2ZT

2 and note that

|Mk|= |A|nk

p∏
i=1

.1+nkrδi/:

Now, integrating the product of the density (9) and .1=σ2
k /α+1 with respect to βk and σ2

k , we
obtain

2αΓ{.nkrp−q/=2+α}
π.nkrp−q/=2.nkrpσ̂2

k/.nkrp−q/=2+α|nkrX′WkX|1=2|A|nk=2
p∏

i=1
.1+nkrδi/1=2

:

Finally, taking the product over the clusters, and multiplying by the prior πn.ω/, yields our
proposed objective function for cluster analysis:

π.ω|y/∝πn.ω/
c.ω/∏
k=1

2απq=2 Γ{.nkrp−q/=2+α}
p∏

i=1
.1+nkrδi/

−1=2

.nkr/q=2.nkrpσ̂2
k/.nkrp−q/=2+α|XTWkX|1=2

: .10/

If each measurement is rescaled by a factor a, say, then the value of σ̂2
k changes to a2σ̂2

k, result-
ing in a multiplicative change in expression (10) of Πc

k=1a−.nkrp−q+2α/ ∝ac.q−2α/. This motivates
the choice q=2 for the hyperparameter α on the grounds of scale invariance. This is of practical
importance in microarray studies, for example, where the responses are log-expression ratios,
and the choice of base is arbitrary.
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The posterior π.ω|y/ is an intuitively reasonable objective function for clustering in that it
rewards large homogeneous clusters, i.e. those in which σ̂2

k is small and nk is large, but also
includes penalties for extreme partitions in which c.ω/ is very small or very large. Moreover,
examining the form of σ̂2

k shows that there are two distinct parts to this variance. The first piece
measures a within-cluster variance and will help to identify clusters of similar objects even if
they do not follow the specified model. The second piece measures lack of fit and will identify
clusters of objects whose average profile closely follows the assumed model that is determined
by the matrix X.

Another nice feature of the mixed model approach is that the predicted mean for a given clus-
ter is a compromise between a projection onto the columns of X and the columns of X|Z2. This
allows cluster means to deviate from the base model while retaining parsimony. Owing to the flat
prior specification for β, provided that nkrp−q> 1, the posterior expectation of Xβk +Z2Vk is
equal to the best linear unbiased predictor given by

Xβ̂k +Z2V̂ k =Xβ̂k +nkrλ2Z2ZT
2 Wk.Ȳk −Xβ̂k/

=nkrλ2Z2ZT
2 WkȲk + .I −nkrλ2Z2ZT

2 Wk/Xβ̂k: .11/

Thus, predicted values in large clusters shrink towards the more complex model. In particular,
if Z1 = 0 and Z2 = I, the predicted values in the kth cluster are a convex combination of Xβ̂k

and Ȳ k, the estimate that is based on a completely unstructured mean.
The model that was considered by Heard et al. (2006), section 3, is a special case of model (7)

in which X=Z1 =0. One key difference between their Bayesian model and ours is their use of
independent, proper, inverse gamma priors for σ2

1, . . . ,σ2
c.ω/. Their shape and scale parameters

are set at 10−2 to reflect little prior information. However, this results in a posterior distribution
that is not scale invariant in the sense that was described above.

3. Stochastic search

Once we have constructed an objective function π : Pn → R+ that measures the goodness of
partitions, we are left with a potentially difficult optimization problem. As explained in Section
1, Bn grows extremely rapidly with n. Therefore, unless n is very small, it is impossible to maxi-
mize π by brute force enumeration. An alternative approach might be to generate a completely
random sample of partitions from Pn and to evaluate their π-values. Surprisingly, simulation
from the uniform distribution on Pn is a non-trivial problem—see, for example, Pitman (1997).
Moreover, this method is quite inefficient. For example, even if n is only 20, and 1 billion random
partitions are generated, the probability that none of the top 1000 partitions are observed is
about 0.98. Thus, it is clear that a more intelligent search algorithm is required.

Our task is a special case of the general problem of finding the maximum of an objective
function over a large combinatorial set. Problems of this type are often amenable to Markov
chain Monte Carlo optimization, which entails running a Markov chain on the combinatorial
set of interest and evaluating the objective function at the successive states (see, for example,
section 12.6 of Jerrum and Sinclair (1996)). Before introducing the Markov chains that we have
developed for this problem, we digress briefly to discuss the issue of multimodality.

The problem of local modes is well known to plague the likelihood function of the mixture
model (1). However, the mixture model likelihood is a function of the model parameters. In
contrast, our objective function is over the discrete space of partitions. Thus, the multimodality
issue is very different in the context of our model. Multimodality on the partition space would
mean that there are two or more partitions with high posterior probabilities that are separated by
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regions of low probability. This possibility seems implausible for models that are even remotely
reasonable descriptions of the data. Moreover, our empirical findings are consistent with this
intuition, i.e. we have found no evidence of multimodality in the specific versions of π.ω|y/

with which we have worked. (As we explain in Section 5, we have ‘hunted’ for local modes by
rerunning our search algorithm from multiple starting points in Pn. So this is not a case of
‘ignorance is bliss’.) In the next two subsections, we describe a Markov chain with state space
Pn and stationary mass function proportional to π that is very simple to simulate and seems to
be effective at honing in on the maximum of the objective function.

3.1. A Metropolis–Hastings algorithm based on a biased random walk
In general, the MH algorithm allows us to simulate a Markov chain with a prespecified sta-
tionary distribution by ‘correcting’ an easy-to-simulate candidate Markov chain. When an MH
algorithm is used to solve combinatorial optimization problems, the candidate Markov chain
is often taken to be a random walk on a graph that defines a neighbourhood structure for the
combinatorial set in question. Let Gn be a connected, undirected graph with vertex set Pn such
that there is an edge between two vertices ωi and ωj, if and only if it is possible to go from
partition ωi to partition ωj by moving exactly one of the n objects in ωi to a different cluster.
The graph Gn determines a neighbourhood structure on Pn, i.e. ωi and ωj are neighbours if
and only if they share an edge. For example, when n= 3, the five possible partitions are given
in expression (5). The only two partitions that do not share an edge in G3 are ω1 and ω5.

Let d.ω/ denote the number of neighbours (or degree) of the vertex ω in Gn. An obvious
candidate Markov chain for the MH algorithm is the nearest neighbour random walk on Gn

which moves from ω′ to ω with probability 1=d.ω′/ if ω and ω′ are neighbours and 0 otherwise.
Our simple example with n= 3 illustrates that different partitions may have different numbers
of neighbours. Consequently, the transition matrix of this random walk is not symmetric. For
example, pr.ω1 →ω2/= 1

3 , but pr.ω2 →ω1/= 1
4 .

Consider programming the MH algorithm with the nearest neighbour random walk as the
candidate. Let the current state be ω′. To simulate the next state, we require a method of sam-
pling uniformly at random from the d.ω′/ neighbours ofω′—call the selected neighbourω—and
an algorithm for calculating d.ω/, so that the acceptance probability may be computed. This
can become quite computationally intensive, as we must enumerate all the possible neighbours.
However, it turns out that a slightly different candidate leads to an MH algorithm that is as
effective and much simpler to programme.

The alternative candidate Markov chain evolves as follows. Let c denote the number of clus-
ters in the current state (partition). There are two cases: c = 1 and c � 2. If c = 1, choose one
of the n objects uniformly at random and move the chosen object to its own cluster. If c � 2,
choose one of the n objects uniformly at random. If the chosen object is a singleton (i.e. forms
its own cluster), then move it to one of the other c−1 clusters, each with probability 1=.c−1/.
If the chosen object is not a singleton, then move it to one of the other c−1 clusters, each with
probability 1=c, or make the chosen object its own cluster with probability 1=c. As with the
nearest neighbour random walk, the move ω′ →ω has positive probability if and only if ω′ and
ω share an edge in Gn. We call this Markov chain the biased random walk on Gn.

At first glance, one might think that what we have just described is simply an algorithm for
simulating the nearest neighbour random walk. This is not so, however. For example, under
the new dynamics, in the n = 3 example, pr.ω1 → ω2/ = pr.ω2 → ω1/ = 1

3 . In fact, straight-
forward arguments show that the transition matrix of the biased random walk is symmetric.
Therefore, when this chain is used as the candidate in the MH algorithm, the acceptance
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probability is simply min{1,π.ω/=π.ω′/}, i.e. running this algorithm does not require find-
ing or counting the neighbours of ω and ω′. Hence, this alternative candidate results in an
MH algorithm that is much easier to programme and faster in the sense of more iterations per
unit time.

Crowley (1997) developed and employed a Markov chain on Pn that can be viewed as a
deterministic scan Gibbs sampler. Our MH algorithm based on the biased random walk has
the same basic structure as a random-scan version of Crowley’s algorithm. In both cases, at
each iteration, one of the n objects is chosen at random and the chosen object is either moved
to a new cluster or left where it is. However, one iteration of the random-scan Gibbs sampler
typically requires many more evaluations of the objective function than the biased random-walk
algorithm.

3.2. Adding split–merge moves
The biased random walk yields proposals that are small or local in the sense that only one object
at a time is moved from one cluster to another. Consequently, a large scale change that would
result in a substantial increase in the objective function (e.g. merging two similar clusters) is
very unlikely to occur because, taken together, the sequence of moves leading to this change is
very unlikely.

We now describe an alternative candidate Markov chain that proposes more drastic changes
to the current state and which addresses the limitation of the biased random walk that was
described above. This candidate chain was used by Green (1995) in his analysis of Consonni
and Veronese’s (1995) model. At each iteration, we randomly decide between a merge move with
probability pm ∈ .0, 1/ and a split move with probability 1−pm. A merge proposal is constructed
by merging two randomly chosen clusters in the current partition. A split proposal is created by
randomly choosing a cluster and then randomly splitting it into two clusters conditionally on
neither being empty. A split move is automatically proposed whenever the current state consists
of a single cluster, and likewise a merge move is automatically proposed when the current state
consists of n clusters. Suppose that ω,ω′ ∈ Pn and that it is possible to arrive at ω by merging
two clusters in ω′. Let nÅ denote the size of the cluster in ω that must be split to arrive at ω′.
(nÅ will necessarily be greater than or equal to 2.) Under these dynamics

pr.ω′ →ω/= 2pm

c.ω′/{c.ω′/−1}
and

pr.ω→ω′/= 1−pm

.2nÅ−1 −1/
c.ω/∑
k=1

I[#{Ck.ω/}�2]

:

To use this Markov chain as the candidate in an MH algorithm, we would accept a proposed
move from ω′ →ω with probability min.1, R/ where

R= π.ω/pr.ω→ω′/
π.ω′/pr.ω′ →ω/

,

and we would accept a proposed move from ω→ω′ with probability min.1, 1=R/.
It is a simple matter to add split–merge moves to the biased random-walk algorithm described

above. For example, at each iteration we could make a transition according to the biased random-
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walk MH algorithm or the split–merge algorithm with probabilities pb and 1−pb respectively.
Since π is invariant for each MH kernel, it is invariant for the mixture (see, for example, Besag
et al. (1995)).

4. Simulation study

In this section we report results from a simulation study in which our method is compared with
the K -means method (Hartigan and Wong, 1979), which is one of the most widely used clus-
tering algorithms. The K -means algorithm is a deterministic greedy algorithm and, like most
clustering algorithms, a limitation is that it requires a fixed, user-specified, number of clusters.
At each iteration, the current partition is updated by moving a single object to a different cluster.
The particular move that is made is the one that results in the largest decrease in the within-clus-
ter variation. Its implementation in the R package (R Foundation for Statistical Computing,
2006) involves a random starting partition. Thus, the method does not return the same answer
when it is applied multiple times to the same input data. We view this as a good feature, as it
serves to emphasize a key point of this paper: that some form of stochastic search is unavoidable
if the user is to have confidence in the output from a clustering algorithm.

We compared the performance of the K -means algorithm with our model-based stochas-
tic search approach by using 10 data sets that were generated according to the following
regime. Each data set consisted of n = 200 pairs of replicate profiles of dimension p = 11,
and each contained 13 clusters of sizes 100, 20, 20, 10, 10, 10, 5, 5, 5, 5, 5, 3 and 2. Each
cluster had a distinct mean profile, with the mean profile for the cluster of size 100 being
identically 0. (This was motivated in part by applications in genetics in which most genes
do not respond to a given treatment.) The remaining 12 mean profiles were functions of
the following three types: f1.t/ = a.t=T/α−1.1 − t=T/β−1, f2.t/ = a − b exp.−αt/ and f3.t/ =
a sin.2πt=β/ for 0� t �T =10. Four different choices of parameters were selected for each type of
function.

We added random noise to each profile at the observation, replicate and cluster level. Spe-
cifically, each replicate profile has the form (7) with the (normal) distributional assumptions for
Ui and "ij that were described in Section 2. However, the components of Vk were generated as
identically distributed but positively correlated normal variates to produce a smooth perturba-
tion of the cluster mean (an exception was that Vk was identically 0 in the largest cluster). It
is important to keep in mind that, even though the theoretical model generating the data had
exactly 13 clusters, the added noise makes it unlikely that 13 is the ‘right number of clusters’ for
a given data set. In fact, a cursory examination of the simulated data suggested an average of
about nine distinguishable clusters.

We assessed performance on the basis of the number of pairs of objects in the 12 non-zero
mean clusters that were correctly clustered together or apart (using the theoretical model as the
gold standard). Specifically, consider the 2 ×2 table with counts {nij} that is formed by cross-
classifying all

(200
2

)
pairs of objects according to whether they belong together and whether they

were clustered together. We used four statistics to measure performance:

(a) the χ2-statistic,

χ2 = .n11 −n1+/2

n1+
+ .n22 −n2+/2

n2+
, .12/

which compares the observed diagonal counts with the ideal, n11 =n1+ and n22 =n2+;
(b) Yule’s Q association measure (Agresti (1990), page 23),
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Q̂= n11n22 −n12n21

n11n22 +n12n21
; .13/

(c) the sensitivity n11=n1+;
(d) the specificity n22=n2+.

Note that Q̂∈ [−1, 1] and values near 1 correspond to better performance. Also, the maximum
value of χ2 equals n1+ + n2+ = n++, when the main diagonal counts are both 0. We define
ψ=1−χ2=n++, so that values that are close to 1 correspond to better performance for all four
measures.

The K -means algorithm was implemented on each of the 10 data sets with K taking values
5, 10 and 20. Each of the K -means partitions were then used as starting values for model-based
stochastic searches. To emulate a situation in which there is no obvious parametric base model
for the profiles, we used a quadratic penalized spline model that can be formulated as the best
linear unbiased predictor from a linear mixed model fit (Ruppert et al., 2003). In particular, we

Table 1. Simulation results comparing the K -means method with model-based
stochastic search (‘Splines’)†

Method K Yule’s Q ψ Sensitivity Specificity

K -means 5 0.952 0.945 0.867 0.769
(0.025) (0.013) (0.045) (0.031)

10 0.465 0.899 0.409 0.956
(0.057) (0.009) (0.030) (0.003)

20 −0.173 0.815 0.183 0.989
(0.026) (0.003) (0.007) (0.001)

Splines, 12.60 0.994 0.991 0.930 0.913
log.m/=0 (0.371) (0.002) (0.002) (0.014) (0.015)

13.4 0.965 0.989 0.858 0.945
(0.542) (0.016) (0.004) (0.037) (0.006)
14.50 0.946 0.985 0.793 0.962
(0.582) (0.013) (0.003) (0.031) (0.004)

Splines, 7.30 0.999 0.976 0.971 0.838
log.m/=−10 (0.260) (0.001) (0.007) (0.010) (0.028)

8.60 0.992 0.994 0.928 0.930
(0.163) (0.003) (0.001) (0.018) (0.006)
9.30 0.967 0.989 0.846 0.953

(0.260) (0.011) (0.003) (0.031) (0.004)
Splines, 6.10 0.999 0.960 0.979 0.784

log.m/=−20 (0.180) (0.000) (0.009) (0.007) (0.029)
8.00 0.992 0.991 0.931 0.916

(0.211) (0.005) (0.003) (0.020) (0.016)
8.30 0.969 0.990 0.863 0.945

(0.260) (0.013) (0.003) (0.034) (0.006)
Splines, 5.80 0.998 0.956 0.973 0.765

log.m/=−30 (0.133) (0.001) (0.008) (0.011) (0.023)
7.30 0.997 0.991 0.964 0.902

(0.153) (0.002) (0.002) (0.012) (0.012)
7.60 0.995 0.991 0.936 0.909

(0.267) (0.002) (0.004) (0.012) (0.017)

†Values given are averages over 10 data sets with standard errors given below in parenthe-
ses. The stochastic searches were started at the K -means solutions for K =5, 10, 20. The
average number of clusters in the final partitions are given in the column that is headed
by K. We note that the values of E{c.ω/} corresponding to log.m/=0, −10, −20, −30
are 5.87803094, 1.00026663, 1.00000001 and 1.00000000 respectively.
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used three knots, τ1 = 2:5, τ2 = 5 and τ3 = 7:5, so that the X -matrix consists of three columns
(q=3): a column of 1s, 11 equally spaced time points, ti = i, for i=0, 1, . . . , 10, and a column of
the squared time points. The matrix Z1 is an identity matrix (s1 =11) and Z2 is an 11×3 matrix
with .i, j/th entry given by .ti − τj/2+ (so that s2 =3). The parameters λ1 and λ2 were set equal
to analysis-of-variance estimates based on the first K -means partition and a ‘default’ model
in which the cluster mean profiles are assumed to be constant (i.e. X = 1p), and the variance
parameters are assumed homogeneous across clusters. (This is another difference between our
implementation and that of Heard et al. (2006), section 5.2.) They took an empirical Bayes
approach in which the maximization is accomplished by running their algorithm for a range of
values of λ2.) Each stochastic search was run for 105 iterations with the parameters pb and pm
from Section 3.2 set equal to 0.9 and 0.5 respectively.

Average values of the four performance measures, and their standard errors, are reported in
Table 1 for the K -means partitions, and those obtained by our model-driven stochastic search.
Also given are the average number of clusters in the final partitions, at each combination of ini-
tial number of clusters and the prior parameter m. This simulation shares some general features
with others that we have performed. First, the final number of clusters, c.ω/, tends to increase
with the initial number. This is an indication that the algorithm has not fully converged. How-
ever, the numbers are not drastically different. For example, with log.m/=0, c.ω/ ranged from
12.6 when the initial number was 5, to 14.5 when the initial number was 20. Second, the final
number of clusters tends to decrease as m decreases owing to the penalty term, c.ω/ log.m/,
in the log-posterior. Third, setting log.m/= 0 leads to overestimation of the number of distin-
guishable clusters (about 9 in this simulation), but there is a large range of values of m (which is
consistent with E{c.ω/}≈ 1) that yield similar reasonable results. Fourth, specificity generally
decreases with c.ω/, whereas sensitivity increases. This is to be expected, since, the larger c.ω/,
the less likely a pair of objects from different theoretical clusters is to be placed in the same
empirical cluster.

It is interesting that the K -means algorithm performs best when K=5. When K=10 (which is
close to the correct value), the performance measures deteriorate dramatically, with the excep-
tion of sensitivity. Not surprisingly, the best overall performances of the model-based stochastic
search occur at settings which result in c.ω/ close to 9. However, the model-based approach
is almost uniformly better than the K -means method, for the range of initial c.ω/-values and
prior parameter values that we considered.

5. Examples

5.1. Application to yeast cell cycle data
To illustrate the clustering method that is proposed in this paper we consider the expression
profiles of yeast genes from the α-factor synchronization experiment discussed by Spellman
et al. (1998). The data consist of log-expression ratios of 104 genes, which are known to be
cell cycle regulated. The measurements are taken from 18 complementary DNA microarrays
equally spaced at intervals of 7 min. About 80% of the profiles are complete, and all except one
had four or fewer missing values. The one gene with more than four missing values has been
omitted in the subsequent analysis. The data are available on line from Stanford University’s
‘Yeast cell cycle analysis project’ Web site at http://genome-www.stanford.edu/cell
cycle/data/rawdata/.

The primary goal of cluster analysis in this context is to find groups of genes that are all
part of a team performing some function, i.e. groups of co-regulated genes. An example of such
a group is provided in Fig. 1, which shows the profiles of a subset of eight histones that are
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Fig. 1. Gene expression profiles for the eight histones: , first-order Fourier series model (14) fit to the
pointwise average profile

known to show peak expression during the short synthesis phase. A naive way to cluster these
data is to ignore the time aspect and simply to apply a standard clustering algorithm to the
103 18-dimensional vectors. However, implicit in the analysis of Spellman et al. (1998) is the
first-order Fourier series model

E{y.t/}= 1
2 a0 +a1cos.2πt=T/+b1sin.2πt=T/, .14/

where y.t/ denotes log-expression ratio at time t, and T is the period of the cell cycle. Although
it is tempting to make use of this model to represent the mean structure parsimoniously, one
must recognize that strict adherence to such a model could cause problems. For example, the
least squares fit of model (14) to the eight histone profiles is overlayed in Fig. 1. The model is
reasonably effective in identifying the phase of peak expression of each gene, but there is clearly
a substantial lack of fit to these gene profiles. One of the key features of the mixed model meth-
odology that we propose is the allowance for parsimonious deviation from an overly simplistic
base model.

We used the first-order Fourier series model (14) to fill in the missing values and to register
the profiles. More specifically, if T is known, then the model is linear in the intercept and slope
parameters, a0 and .a1, b1/. In our analysis we fixed T at 62, which is the least squares estimate
of T that was obtained by Booth et al. (2004) in a previous analysis of these same data. We
then estimated the regression parameters for each gene separately via least squares and used the
resulting fitted models to fill in the missing data. The possibility of incorporating the imputation
of missing values into the Bayesian analysis is discussed in the next section. However, having
balanced data greatly simplifies the computations in the cluster analysis. Indeed, when the data
are balanced, the estimated regression coefficients for a given cluster are simply averages of the
least squares estimates for the genes in the cluster. As missing values comprised less than 2% of
the data, this substitution has little effect on our conclusions. Finally, to register the profiles at
the same overall level, we further modified the data by subtracting the estimated intercept from
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each profile. This is similar to the mean subtraction that was used in Spellman et al. (1998).
In our cluster analysis, we used the linear mixed model (7) with Z1 =0 (no replicates), Z2 = I

and an X -matrix based on model (14), i.e. X is 18×2 with the row corresponding to time t equal
to .cos.2πt=62/, sin.2πt=62//. The intercept term is absent because of the registration. To obtain
a value for λ2, we first applied the K -means clustering algorithm to the data with the number of
clusters fixed at 5, corresponding to the number of phases of the cell cycle, and then obtained the
analysis-of-variance estimate λ̂2 = 1:45 on the basis of the K -means partition, and the default
model that was described in Section 4. (A method for incorporating the tuning parameters in
the Bayesian analysis is discussed in the next section.) A second analysis-of-variance estimate,
λ̂2 =2:39, was obtained by using a K -means partition with 10 clusters.

Using the two K -means solutions as starting partitions, along with their associated λ̂2-values,
we searched for the maximizer of the objective function by running 105 iterations of the MH
algorithm with pb =0:9 and pm =0:5. We used log.m/=−20, which corresponds to an a priori
expected number of clusters that is 1 to seven decimal places. To demonstrate the insensitivity
of our stochastic search algorithm to the starting value, we performed four additional runs of
the algorithm with the same two λ2-values starting with all genes in a single cluster as well as
all genes in separate clusters. The best partitions found were remarkably similar regardless of
the starting partition and the value of λ2. In particular, the Q̂ association measure (13) was
greater than 0.99 in all pairwise comparisons between the six runs. Moreover, the final number
of clusters in the six runs ranged only from 9 to 11. One of the model-based solutions with
nine clusters is shown in Fig. 2, with the eight histones captured in cluster 1. This cluster was
perfectly identified by all six model-based solutions.

In comparison, the association between the two K -means solutions was Q̂ = 0:92, and the
pairwise association between these and the model-based solutions ranged from 0.86 to 0.97.
In addition, the histone cluster was not perfectly identified in either K -means partition. A key
point is that, for the K -means procedure to be effective, some form of stochastic search must
be incorporated, with good partitions being identified presumably by its least squares criterion.
Similar comments can be made about other clustering algorithms that converge to different
solutions depending on the starting values.

5.2. Corneal wound healing
Our next example concerns 646 gene expression profiles that were obtained from Affymetrix
gene chip microarrays at days 0, 1, 2, 3, 4, 5, 6, 7, 14, 21, 42 and 98 of a study of corneal wound
healing in rats at the University of Florida. There were two technical replicate measurements at
each time point. The day 0 sample was taken before photorefractive keratectomy (corrective eye
surgery) and hence represents a baseline value to which the profiles are expected to return over
the treatment period. Unlike the yeast cell cycle example, here there is no obvious parametric
base model for the profiles. As in the simulation, we used a quadratic penalized spline model.
Specifically, consider the equally spaced and centred timescale, tj =j−5:5, j=0, 1, . . . , 11. Then,
the X -matrix in model (7) is 12×3 with jth row given by .1, tj, t2

j /, and Z1 and Z2 are both 12×5,
with the entries in column i=1, . . . , 5 equal to .tj − τi/

2+, j =0, . . . , 11, where τi =2.i−3/.
As with the cell cycle data, an initial partition of the data was obtained by applying the

K -means procedure. In this case we set the number of clusters equal to 20. Analysis-of-variance
fitting of the default model based on the K -means partition resulted in the estimates .λ̂1, λ̂2/

equal to (0.0,1.31). The best partition found after running the stochastic search algorithm
for 105 iterations, with log.m/=−30, and using the K -means solutions to initiate the Markov
chain, consisted of 16 clusters. These are show in Fig. 3. Also shown are the (unnormalized)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Clusters of yeast cell cycle gene profiles ( , best linear unbiased predictors calculated by using
equation (11)): (a) cluster 1 (eight histones); (b) cluster 2; (c) cluster 3; (d) cluster 4; (e) cluster 5; (f) cluster
6; (g) cluster 7; (h) cluster 8; (i) cluster 9
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Fig. 3. 16 clusters from the corneal wound healing experiment arranged according to cluster size ( ,
averages over the two replicates for each gene; , best linear unbiased predictors at the 12 time points 0,
1, 2, 3, 4, 5, 6, 7, 14, 21, 42 and 98 days; the timescale is transformed so that the points are equally spaced):
(a) cluster 1, 87 genes; (b) cluster 2, 79 genes; (c) cluster 3, 66 genes; (d) cluster 4, 59 genes; (e) cluster
5, 57 genes; (f) cluster 6, 48 genes; (g) cluster 7, 40 genes; (h) cluster 8, 40 genes; (i) cluster 9, 39 genes;
(j) cluster 10, 26 genes; (k) cluster 11, 24 genes; (l) cluster 12, 23 genes; (m) cluster 13, 20 genes; (n) cluster
14, 18 genes; (o) cluster 15, 13 genes; (p) cluster 16, 7 genes; (q), (r) (unnormalized) log-posteriors and
numbers of clusters as a function of iteration number for four additional runs of the algorithm with log.m/D0
( ), log.m/D�10 (-- - - - - -), log.m/D�20 (. . . . . . .) and log.m/D�30 (� - � - � -)
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log-posteriors and the number of clusters as a function of iteration number for four additional
runs of the algorithm with log.m/ equal to 0, −10, −20 and −30. (These values of log.m/ corre-
spond to E{c.ω/} values of 7.04878896, 1.00031994, 1.00000002 and 1.00000000 respectively.)
The plot of the log-posteriors serves as a crude graphical convergence diagnostic. (The reader
should keep in mind that the posteriors are not normalized so the curves are not directly com-
parable.) The plot showing the progression in the numbers of clusters illustrates the effect of the
prior parameter m. The algorithm tends to overestimate the number of clusters when log.m/=0
but is relatively stable for values in the range from log.m/=−10 to log.m/=−30. These findings
are consistent with those in the simulation study and in other examples that we have considered.

Finally, we provide another demonstration that the algorithm is fairly robust to the starting
value. We performed four additional runs of the algorithm with the same .λ̂1, λ̂2/. The first was
started with all genes in the same cluster, the second with every gene in its own cluster and the
third and fouth runs were started at two other K -means solutions (based on 20 clusters). The
final partitions were all quite similar to the partition that was reported above. Indeed, the Q̂

association measure was greater than 0.84 in all pairwise comparisons among these five runs.
Moreover, this number jumps up to 0.89 if we remove the first run from consideration. This is
quite consistent with our empirical experience which suggests that it takes the algorithm longer
to converge when the starting partition has too few clusters.

6. Discussion

In our implementation the ‘tuning’ parameter, λ= .λ1,λ2/, was fixed throughout the stochastic
search. We chose its value by fitting a default linear mixed model to an initial partition that
was obtained by using the K -means procedure. An alternative approach is to incorporate λ into
the Bayesian analysis by specifying a prior distribution. However, no choice of prior leads to a
tractable form for π.ω|y/. One possibility for exploring the joint posterior of λ and ω, π.λ,ω|y/,
is to use an MH algorithm that updates ω (as in Section 3) with probability p and λ with
probability 1−p. We have successfully implemented this approach for λ2 by using a Student t
random-walk candidate. To be specific, given the current value λ′

2, the candidate is λ2 =κT +λ′
2

where T is a standard Student t-variate and κ is chosen to match the fit of a Gaussian distri-
bution to the posterior as a function of λ2 at the initial partition. (The posterior π.λ,ω|y/ is
integrable with respect to λ2 if Z2 = I.) A major disadvantage of this approach is that, instead
of yielding evaluations of the marginal posterior, π.ω|y/, it yields evaluations of π.ω|λ, y/ and
approximate samples from π.ω|y/. It is unclear how these can be used to approximate effectively
the maximizer of π.ω|y/.

Unfortunately, a similar issue arises when we attempt to deal with missing values in the mul-
tivariate profiles in a formal way. In particular, integrating the missing data out of the likelihood
leads to an intractable form for the marginal posterior distribution on the space of partitions.
In other words, π.ω|yobs/ is intractable, where yobs denotes the observed data. An exception is
the special case X=Z1 =0, which was considered in Heard et al. (2006). However, missing data
complicate the computations even in this setting. In the general case, the data augmentation
algorithm (which is also known as the two-variable Gibbs sampler) could presumably be used to
simulate a Markov chain whose stationary distribution is π.ω, ymiss|yobs/, where ymiss denotes
the missing data, but the problem that was described above is apparent here as well, i.e. this
method would not provide us with evaluations of π.ω|yobs/.

In conclusion, we have proposed a multilevel mixed model for clustering multivariate data.
Our model leads to a tractable, probability-based, objective function for identifying good par-
titions. One key difference between the approach proposed, and most conventional clustering
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algorithms, is that it is not necessary to specify the number of clusters in advance. A second
difference is that measurements on different objects, within the same cluster, are correlated
because they share cluster-specific random effects. The inclusion of such random effects allows
for parsimonious deviation of the mean profile for a given cluster from a given base model,
that may be captured statistically via the best linear unbiased predictor. We also allow for a
second level of dependence when replicate observations are obtained on each object, which is
a situation that is quite common in microarray experiments. This second type of dependence
can also be incorporated in the mixture model framework (1) by letting f.·; θk/ be the density
of the entire observation vector for an object from cluster k. For example, both McLachlan
et al. (2004) and Celeux et al. (2005) proposed mixed model formulations of the density f in
which dependence between replicate observations is induced, as it is in our model, through the
inclusion of object-specific random effects. However, in contrast with the mixed models formu-
lation that is proposed in this paper, these models still assume that the observation vectors from
different objects in the same cluster are independent and identically distributed. An approach to
modelling dependence between the observation vectors, within the mixture model framework, is
to suppose that there is a hidden Markov chain on the component indicator vectors. McLachlan
and Peel (2000), chapter 13, pointed out that a hidden Markov model might be realistic, ‘when
the observations appear sequentially in time and tend to cluster or to alternate between different
possible components’. However, it is difficult to justify this approach when the ordering of the
observations is arbitrary.

Acknowledgements

The authors are grateful to Dr Henry Baker, College of Medicine, University of Florida, for
providing the wound healing data set, and to Peter McCullagh and three reviewers for comments
and suggestions that led to a much improved version of the paper. This research was partially
supported by National Science Foundation grants DMS-04-05543 (Booth and Casella) and
DMS-05-03648 (Hobert).

Appendix A: Expected number of clusters under Crowley’s prior

Assuming that ω is a random partition with mass function (4), we have

pr{c.ω/=k}= ∑
ω:c.ω/=k

πn.ω/= Γ.m/mk

Γ.n+m/

∑
ω:c.ω/=k

k∏
j=1

Γ.nj/:

Hence,

E{c.ω/}=
n∑

k=1
k pr{c.ω/=k}= Γ.m/

Γ.n+m/
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kmk
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= mΓ.m/
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= mΓ.m/

Γ.n+m/
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{
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mk
k∏
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Γ.nj/
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{
Γ.n+m/

Γ.m/

}

=m{ψ.n+m/−ψ.m/}=m
n−1∑
i=0

1
m+ i

where ψ.·/ is the derivative of the log-gamma function.
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Appendix B: Maximizing the likelihood

For a fixed partition, the maximizer of equation (3) with respect to βk is given by

β̂k ={
.1nkr ⊗X/TM−1

k .1nkr ⊗X/
}−1

.1nkr ⊗X/TM−1
k YÅ

k :

To show that β̂k = .XTWkX/−1XTWkȲk, we shall establish the following two facts:

(a) .1nk
⊗1r ⊗X/TM−1

k .1nk
⊗1r ⊗X/=nkrX

TWkX;
(b) .1nk

⊗1r ⊗X/TM−1
k YÅ

k =nkrWkȲ k.

A key matrix inversion result that will be used is

.Iml +Jm ⊗C/−1 = Iml −Jm ⊗ .Il +mC/−1C: .15/

Using result (15), we obtain

M−1
k ={Inkrp −Jnk

⊗ .Irp +nkA
−1B/−1A−1B}.Ink

⊗A−1/

= Ink
⊗A−1 −Jnk

⊗ .Irp +nkA
−1B/−1A−1BA−1: .16/

Now,

nkA
−1B=Jr ⊗{Ip − .Ip + rλ1Z1Z

T
1 /−1rλ1Z1Z

T
1 }nkλ2Z2Z

T
2

=Jr ⊗ .Ip + rλ1Z1Z
T
1 /−1nkλ2Z2Z

T
2 =Jr ⊗nkD,

where D= .Ip + rλ1Z1Z
T
1 /−1λ2Z2Z

T
2 . It follows that

.Irp +nkA
−1B/−1A−1 = .Irp +Jr ⊗nkD/−1{Irp −Jr ⊗ .Ip + rλ1Z1Z

T
1 /−1λ1Z1Z

T
1 }

= Irp −Jr ⊗ .Ip + rnkD/−1nkD−Jr ⊗ .Ip + rλ1Z1Z
T
1 /−1λ1Z1Z

T
1

−Jr ⊗ .Ip + rnkD/−1nkD.Ip + rλ1Z1Z
T
1 /−1rλ1Z1Z

T
1

= Irp −Jr ⊗ .Ip + rλ1Z1Z
T
1 /−1λ1Z1Z

T
1 −Jr ⊗ .Ip + rnkD/−1nkD.Ip + rλ1Z1Z

T
1 /−1:

This combined with equation (16) yields

M−1
k .1nk

⊗1r ⊗X/=1nk
⊗{A−1 − .Irp +nkA

−1B/−1nkA
−1BA−1}.1r ⊗X/

=1nk
⊗ .Irp +nkA

−1B/−1A−1.1r ⊗X/

=1nkr ⊗WkX, .17/

where we have used the fact that

Wk = .Ip + rλ1Z1Z
T
1 +nkrλ2Z2Z

T
2 /−1

={Ip + .Ip + rλ1Z1Z
T
1 /−1nkrλ2Z2Z

T
2 }−1.Ip + rλ1Z1Z

T
1 /−1

= .Ip + rnkD/−1.Ip + rλ1Z1Z
T
1 /−1

= Ip − .Ip + rλ1Z1Z
T
1 /−1rλ1Z1Z

T
1 − .Ip + rnkD/−1rnkD.Ip + rλ1Z1Z

T
1 /−1:

The two facts now follow directly from equation (17). Thus, we may now write

.YÅ
k − .1nkr ⊗X/βk/

TM−1
k .YÅ

k − .1nkr ⊗X/βk/=nkr{.βk − β̂k/
TXTWkX.βk − β̂k/+pσ̂2

k}, .18/

where

σ̂2
k = 1

nkrp
.YÅ

k − .1nkr ⊗X/β̂k/
TM−1

k .YÅ
k − .1nkr ⊗X/β̂k/:

We conclude by establishing statistic (8). By adding and subtracting the term 1nkr ⊗ Ȳ k and multiplying,
we obtain

nkrpσ̂
2
k = .YÅ

k −1nkr ⊗ Ȳ k/
TM−1

k .YÅ
k −1nkr ⊗ Ȳ k/+ .1nkr ⊗ .Ȳ k −Xβ̂k//

TM−1
k .1nkr ⊗ .Ȳ k −Xβ̂k//

+2.YÅ
k −1nkr ⊗ Ȳ k/

TM−1
k .1nkr ⊗ .Ȳ k −Xβ̂k//:



138 J. G. Booth, G. Casella and J. P. Hobert

Arguments that are similar to those above show that the cross-term (third term) is 0 and that the second
term can be written as nkr.Ȳ k −Xβ̂k/

TWk.Ȳ k −Xβ̂k/. Finally, the first term is

.YÅ
k −1nkr ⊗ Ȳ k/

T.Ink
⊗A−1 +Jnk

⊗ .Irp +nkA
−1B/−1A−1BA−1/.YÅ

k −1nkr ⊗ Ȳ k/:

It is easy to show that BA−1 =Jr ⊗DT and it follows from what was done above that

.Irp +nkA
−1B/−1A−1 = Irp −Jr ⊗Hk,

where

Hk = .Ip + rλ1Z1Z
T
1 /−1λ1Z1Z

T
1 + .Ip + rnkD/−1nkD.Ip + rλ1Z1Z

T
1 /−1:

Hence,

.Irp +nkA
−1B/−1A−1BA−1 =Jr ⊗ .Ip − rHk/D

T =Jr ⊗Gk,

say. It follows that

.YÅ
k −1nkr ⊗ Ȳ k/

T.Jnk
⊗ .Irp +nkA

−1B/−1A−1BA−1/.YÅ
k −1nkr ⊗ Ȳ k/

= .YÅ
k −1nkr ⊗ Ȳ k/

T.Jnkr ⊗Gk/.Y
Å
k −1nkr ⊗ Ȳ k/=0,

and so

.YÅ
k −1nkr ⊗ Ȳ k/

TM−1
k .YÅ

k −1nkr ⊗ Ȳ k/= .YÅ
k −1nkr ⊗ Ȳ k/

T.Ink
⊗A−1/.YÅ

k −1nkr ⊗ Ȳ k/

= ∑
i∈Ck

.Yi −1r ⊗ Ȳ k/
TA−1.Yi −1r ⊗ Ȳ k/:
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