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Assessing Robustness of Intrinsic Tests of
Independence in Two-Way Contingency Tables

George CASELLA and Elías MORENO

For testing nested hypotheses from a Bayesian standpoint, a desirable condition is that the prior for the alternative model concentrates mass
around the smaller, or null, model. For testing independence in contingency tables, the intrinsic priors satisfy this requirement. Furthermore,
the degree of concentration of the priors is controlled by a discrete parameter, t, the training sample size, which plays an important role in the
resulting answer. In this article we report on the robustness of the tests of independence for small or moderate sample sizes in contingency
tables with respect to intrinsic priors with different degrees of concentration around the null. We compare these tests to frequentist tests and
other robust Bayes tests. For large sample sizes, robustness is achieved because the intrinsic Bayesian tests are consistent. Examples using
real and simulated data are given. Supplemental materials (technical details and data sets) are available online.
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1. INTRODUCTION

The problem of testing independence in contingency tables
has, to say the least, a long history (mainly from a frequen-
tist viewpoint). Many controversies have arisen, concerning the
question of whether to condition on marginal totals, whether
inference should be asymptotic or exact, and what statistics
should be used for testing. A good introduction to this topic
is the review article by Agresti (1992); see also the textbook by
Agresti (1996).

1.1 Frequentist and Bayesian Approaches

The standard test of independence is the classical Pearson
chi-squared test. The justification of the test is asymptotic,
based on the assumption of having a table with fixed margins,
with a multinomial distribution conditional on the margins. But
Pearson’s chi-squared test is unreliable with small samples or
sparse tables; in this situation, an alternative is an exact test.

Exact frequentist inference in contingency tables can be done
by applying the same test statistic to all tables with the same
marginals, and then assessing where the observed table has
fallen in this set of reference tables. The first such test was
Fisher’s exact test, and this idea is the basis of the statistical
package StatXact (www.cytel.com) (see Mehta, Patel, and Sen-
chaudhuri 2000). These p-values have the form

1
∑N

k=1 wk

N∑

k=1

wk1(χ2
k ≥χ2

obs)
, (1)

where 1A is the indicator function of the set A, N is the total
number of tables under consideration, χ2

obs is the chi-squared
statistic of the observed table, and χ2

k is the chi-squared sta-
tistic of the kth table. Standard “exact” weighted or unweighted
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p-values are computed, taking N to be the number of tables with
the same margin as the observed table and

wk = 1 or wk =
∏

ri(x)!∏ cj(x)!
n!∏ij xij! ,

depending on whether an unweighted test or multinomial
weighting is used. Some interesting computational problems
are associated with calculating the statistic (1); for example,
one may need to calculate N, and also enumerate (or sample
from) the set of tables.

An alternative, which conditions only on the table total, is
obtained from the volume test of Diaconis and Efron (1985).
The p-value of this test is given by (1) with wk = 1 and N the
total number of unrestricted tables (i.e., all tables with the same
table total as the observed table) and unrestricted marginal to-
tals. Although the volume test provides an inference based on a
more realistic sampling model, it tends to be more conservative
than the restricted tests, typically favoring the null hypothesis.

Most of the Bayesian literature on contingency tables focuses
on the estimation of cell probabilities and smoothing parame-
ters that appear by decomposing the log of the original parame-
ters θij into a sum of row effect parameters αi, column effect pa-
rameters βj, and interaction effect parameters λij (e.g., Leonard
1975; Laird 1978; Albert and Gupta 1982, 1983; Albert 1987;
Nazaret 1987; Epstein and Fienberg 1992; for reviews, see Al-
bert 2004 or Agresti and Hitchcock 2005). A relatively smaller
number of articles are devoted to testing one-sided hypotheses.
There the use of conjugate priors is common (as in Novick and
Grizzle 1965 and Altham 1969); some exceptions are the work
of Howard (1998) and Kadane et al. (2002). Howard (1998)
considered two conditionally independent binomial sampling
distributions with parameters p1 and p2, and the one-sided null
H0 : p1 > p2. He argued in favor of considering a dependent
prior for p1 and p2. there the null plays a role (albeit a some-
what weak one) in the construction of the Bayesian model for
computing the posterior probability of H0.

Key references for Bayesian tests of independence in contin-
gency tables are the series of articles by Good (1967, 1976),
Crook and Good (1980), and Good and Crook (1987), which
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Table 1. Posterior probabilities of H0 for the procedures of Good and Crook (1987), Albert (1990),
and the intrinsic procedure, with t = 1, described in Sections 1.2 and 3

Table

2 2 2

2 2 2

2 2 2

6 6 6

6 6 6

6 6 6

5 0 0

5 0 0

5 0 0

Posterior probability of H0 Good 0.450 0.327 0.520
Albert 0.5 0.5 0.375

Intrinsic 0.648 0.891 0.964

are based on Bayes factors, that is, on the statistic B10(y) =
m1(y)/m0(y), where m0(y) is the marginal of the data y under
the null model and m1(y) under the unrestricted model. (See
also Jeffreys 1961; Gunel and Dickey 1974; Albert 1990; and
Kadane et al. 2002.) A general reference on Bayes factors is
Kass and Raftery (1995).

Good (1976) calculated Bayes factors using a row-column
independence prior for the parameters of the multinomial dis-
tribution under H0 and mixtures of symmetric Dirichlet distri-
butions under the alternative. A hyperparameter α, the com-
mon Dirichlet parameter (called the flattening constant), was
assumed to be log-Cauchy distributed. This hyperprior distri-
bution was extended by Crook and Good (1980), and Good
and Crook (1987), where the hyperprior was extended to a log-
Student distribution with degrees of freedom υ . For υ > 15, the
log-Student approximates a lognormal distribution, and υ = 1
approximates a log-Cauchy distribution. Finally, these authors
concluded that the Bayes factors were robust with respect to
variations of the hyperparameters, and recommended the use of
the log-Cauchy distribution.

With all of the attention that has been paid to Bayesian tests
of independence in contingency tables, why do we introduce
yet another test? We do so because some deficiencies remain in
some key references of Bayesian tests of independence; con-
sider, for example, the contingency tables in Table 1. These
three tables are clearly in support of H0, and we give the poste-
rior probabilities of the procedures of Good and Crook (1987)
and Albert (1990), along with those of the intrinsic procedure
developed here. In cases where the null should be favored, the
Good/Crook and Albert procedures do not do so; the intrinsic
procedure gives more reasonable results.

1.2 Testing Nested Hypothesis: The Intrinsic Prior Class

In general, many priors that might be appropriate for estima-
tion purposes cannot be recommended as priors for Bayesian
tests of nested hypothesis. This is because the null hypothesis
is not taken into account in the formulation of the prior. If this
is not done, then it is impossible to guarantee that the prior dis-
tribution on the unrestricted parameters of the model will con-
centrate around the null hypothesis, a condition that is widely
accepted and should be required of a prior for testing a hypoth-
esis. (See, e.g., Jeffreys 1961, chap. 5; Gunel and Dickey 1974,
who noted that this is the “Savage continuity condition”; Berger
and Sellke 1987; Casella and Berger 1987; Morris 1987; Berger
1994; Robert 2001, who also discussed the Jeffreys–Lindley
paradox; and Consonni and La Rocca 2008.)

It is important to realize that if a prior on the unrestricted
hypothesis H1 concentrates probability near H0, this does not
necessarily favor H0, but rather focuses the test on model al-
ternatives that are close to H0. If H0 is reasonable, then it is
important to be able to distinguish H0 from reasonable, close
alternatives. Putting high prior probability on extreme models,
far from H0, is wasteful. If such models are truly generating the
data, then this will be easy to discover with any procedure. If
they are not generating the data (which is more likely), giving
them high probability will distort the resulting test and discount
the more reasonable alternatives.

The foregoing arguments motivate the consideration of the
intrinsic priors for testing independence in contingency tables.
Starting from a default prior for the parameters of a contingency
table {θij}, which typically will not concentrate probability near
the null hypothesis H0 of independence but instead will spread
it out in H1 giving high probability to models far from H0,
the intrinsic prior construction creates a family of new priors,
{π I(θij|H0, t), t ≥ 1}. There priors (a) concentrate probability
near H0; (b) control the degree of concentration of the prior
around the null with the integer parameter t, the “training sam-
ple size”; and (c) maintain consistency of the tests; that is, as the
sample size n becomes infinite, the test will always make the
correct decision for any arbitrary fixed value of t. This means
that when using the intrinsic prior class and an observed sample
{yij}, we will obtain a set of posterior answers, one answer for
each t, associated with different degrees of concentration of the
prior around the null. When these answers essentially convey
the same message, we say that the test is robust with respect to
the concentration of the prior around the null.

Intrinsic priors were introduced in hypothesis testing to con-
vert improper priors into proper ones (Berger and Pericchi
1996; Moreno 1997; Moreno, Bertolino, and Racugno 1998),
but there is no inherent limitation in using them when the de-
fault prior is proper. The intrinsic prior construction for a testing
problem is as follows. Consider a Bayesian testing problem

H0 : {f0(x|θ0),π0(θ0)} vs H1 : {f1(x|θ1),π1(θ1)}, (2)

where f0(x|θ0) is nested in f1(x|θ1) and π0(θ0) and π1(θ1) are
default estimation priors that might be improper. The intrinsic
prior for θ1 conditional on H0 and t is given by

π I(θ1|H0, t) = π1(θ1)Ex|θ1

m0(x)

m1(x)
, (3)

where x = (x1, . . . , xt), mi(x), i = 0,1, are the respective mar-
ginals and the expectation is taken with respect to f1(x|θ1) =∏t

j=1 f1(xj|θ1).
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It is important to note that here we are using a theoretical x,
in that no actual data are used in constructing the intrinsic prior.
In our calculations, the training sample x is distributed accord-
ing to either f0(x|θ0) or f1(x|θ1), with sample size t.

To illustrate the role of t in the shape of the intrinsic prior,
consider the simple case of sampling from a binomial distribu-
tion B(y|n,p) with n known. A default prior for estimating the
parameter p is usually chosen from one of the following distri-
butions: the uniform (Bayes 1783; Laplace 1812), the Jeffreys
prior (Jeffreys 1961; Bernardo 1979), Zellner’s prior (Zellner
1977), or that of Novik and Hall (1965). The first two of these,
the most popular, are proper. The third is proper, and the fourth
is improper. Any of these distributions can be used as a reason-
able default prior for estimating p in the absence of subjective
prior information (see, e.g., Berger 1985, p. 89).

But these priors are not appropriate for testing a null hy-
pothesis, because they do not concentrate mass around the null
hypothesis as the intrinsic priors do. For example, for testing
H0 : p = p0 versus H1 : p �= p0, starting from the proper uniform
prior π(p) = 1[0,1](p), the intrinsic prior for p, conditional on
the null value p0 and training sample size t, is

π I(p|p0, t) = Ex|p
B(x|t,p0)

∫ 1
0 B(x|t,p)dp

= 1

t + 1

t∑

i=0

Be(p|i + 1, t − i + 1)

× Be(p0|i + 1, t − i + 1),

where the expectation is taken with respect to the binomial
B(x|t,p) and Be(p|a,b) represents the beta distribution for p
with parameters a and b.

Figure 1 shows intrinsic priors π I(p|p0, t) for two values of
p0 and t = 1,2, . . . ,25. The prior is always unimodal, and for
t = 1 it is a linear function of p, but as t increases, it concen-
trates more probability mass in the neighborhood of p0. When
we start with the Jeffreys prior and t ≥ 2, the resulting intrinsic
priors are very close to those obtained when starting from the
uniform.

Figure 1. Intrinsic priors from the uniform prior for p0 = 0.1 (left)
and p0 = 0.4 (right) for t = 1,2, . . . ,25. As t increases, the prior con-
centrates more probability mass in the neighborhood of p0. The solid
curve represents the average intrinsic prior.

Thus, in this simple case, the default prior provides intrinsic
priors concentrated around the null hypothesis. We show that
this is the case in more realistic examples. Finally, we note that
the construction of the intrinsic prior class is fully automatic.

1.3 Summary

The rest of the article is organized as follows. In Section 2 we
recall the sampling models used for tests of independence, and
in Section 3 we develop the intrinsic priors and the resulting
posterior probabilities in the 2 × 2 case. Details of the deriva-
tions for general a×b tables are provided in the Supplementary
Materials. In Section 3.3 we explore consistency, with techni-
cal details relegated to the Appendix. In Section 3.4 we also
discuss calculation of the intrinsic priors, which requires sum-
ming over all possible tables with table total t or row totals ti.
In Section 4 we evaluate the performance of intrinsic posterior
probabilities with a number of examples, both real and artificial.
We conclude with a discussion in Section 5.

2. SAMPLING MODELS AND INFERENCE

There are several possible sampling models for contingency
tables. Good and Crook (1987) described three sampling pro-
cedures:

P1 : Condition only on the table total,

P2 : Condition only on the totals of one margin,

P3 : Condition on the totals of both margins.

They noted that P3 is not a very common sampling model,
and that P1 and P2 are more useful. They derived Bayesian tests
under P1 and P2 and illustrated the performance of their method
on some example tables, both real and artificial. In general, their
answers were reasonable, indicating that calibration of the set
of all tables is possible. There are some disturbing anomalies,
however. For example, for the 3×3 table in which every cell has
a 6 (and of course has a p-value = 1), Good and Crook reported
an average Bayes factor of 2.1, which would lead to a posterior
probability of the null hypothesis of 1/(1 + 2.1) = 0.327. In
contrast, our intrinsic procedure yields posterior probabilities of
the null varying between 0.839 and 0.891 as the concentration
parameter t varies.

The procedures P1 and P2 arise under two different sampling
schemes and lead to two different distributions. In an a × b ta-
ble, if sampling procedure P1 is used, then the distribution of
the frequencies is multinomial with ab cells and total equal to
the table total n. There are ab−1 free parameters, the cell prob-
abilities. If sampling procedure P2 is used, where the a row to-
tals are fixed, then the distribution of the frequencies is that of
a independent multinomials, each with b − 1 free parameters
and a total equal to the row total. These are obviously different
models.

It is possible for a statistic to have the same distribution un-
der either P1 or P2; the asymptotics of the chi-squared statistic
are the same. The question that we examine is whether or not
such an equality is desirable. Good and Crook (1987) stated the
following assumption:

Assumption 1 (Ancillarity of the row totals). Under P1, the
row totals alone (or the column totals alone) convey no evidence
for or against H0.
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They then argued that this assumption should be reflected in
the chosen statistic, and they chose their prior to force this to
be the case. Nonetheless, we view P1 and P2 as distinct proce-
dures with distinct structures, which thus should have distinct
statistics. To defend our position, we look at the 2 × 2 case (al-
though we could argue in the general case as well) and consider
the joint density of (y11, r, c), the (1,1) observation, the total of
the first row, and the total of the first column. Using θ to denote
the parameter, direct factorization yields

f (y11, r, c|θ) = f (y11, c|r, θ)f (r|θ).

Assumption 1 requires that f (r|θ) ∝ f (r|θ0), where θ0 is a
null parameter value. This occurs if r corresponds to the fixed
ni with the rows of the table being independent binomials, or
in the 2 × 2 table with cell probabilities θij and table total n,
r ∼ binomial(r|n, θ11 + θ12), where the parameter is a marginal
probability. Although this “approximate ancillarity” of r is well
known, the distributions are different, and formally, there can
never be equality of the sampling procedures P1 and P2.

3. INTRINSIC PRIORS FOR 2 × 2 TABLES

In this section we give a detailed derivation of the intrinsic
posterior probabilities for the 2×2 table under sampling proce-
dures P1 and P2. We present this simple case to provide insight
into the workings of the priors and the resulting probabilities;
the general case is treated in the Supplementary Materials.

3.1 Margins Unrestricted

We start with a 2 × 2 contingency table with n individu-
als classified into four cells each with an unknown probability
θij, i, j = 1,2, and

∑
ij θij = 1. Under this sampling scheme (in

which only n is fixed), the distribution of the possible tables,
y = {y11, y12, y21, y22}, is a three-parameter multinomial distri-
bution, M(y|n, θij). A default prior for θij can be taken as either
a three-dimensional Dirichlet with all parameters equal to 1/2
(the Jeffreys prior) or the Dirichlet with all parameters equal to
1 (the uniform prior).

Under the independence assumption θij = piqj, where
∑2

i=1 pi = ∑2
j=1 qj = 1, the two-parameter distribution of the

table y = {y11, y12, y21, y22} is

f0(y|n,p1,q1) =
(

n

y

)

p(y11+y12)

1 (1 − p1)
(y21+y22)

× q(y11+y21)

1 (1 − q1)
(y12+y22),

where
(n

y

) = ( n
y11y21y12y22

)
, the multinomial coefficient. This

density is nested in the multinomial M(y|n, θij). The prior
π(p1,q1) = Uniform(p1|0,1) × Uniform(q1|0,1) is a default
prior for the parameters (p1,q1).

A default analysis of the testing problem H0 : θij = piqj versus
H1 : θij is to choose between M0 and M1, where

M0 : {f0(x|n,p1,q1),π(p1,q1)} and
(4)

M1 : {M(x|n, θij), D3(θij|1,1,1,1)}.
Note that the default prior D3(θij|1,1,1,1) does not depend on
the null. We use this prior to create an intrinsic prior for θij,
a prior that does depend on H0. We then substitute D3(θij|1,1,

1,1) for the intrinsic prior π I(θij|t) in (4), where t is the training
sample size.

Applying (3), it is straightforward to see that, based on a
training sample size t, the intrinsic prior for θij is

π I(θij|t) = (t + 3)!
[(t + 1)!]2

∑

x:∑ij xij=t

(
t

x

)(
2∏

i=1

ri(x)!
)

×
(

2∏

j=1

cj(x)!
)(∏

i,j

θ
xij
ij

xij!
)

, (5)

where ri(x) = ∑2
j=1 xij and cj(x) = ∑2

i=1 xij are the sum of the
rows and columns. For a data set y = {yij}, the Bayes factor
B10,t(y), for (6) versus a uniform prior for p1 and q1, is equal to
mI

1(y|t)/m0(y|t), where

mI
1(y|t) =

(
n

y

)
(t + 3)!

[(t + 1)!]2(2t + 3)!
∑

{x:∑ij xij=t}

(
2∏

i=1

ri(x)!
)

×
(

2∏

j=1

cj(x)!
)

∏

ij

(xij + yij)!
(xij!)2

and

m0(y|t) =
(

n

y

)
(
∏2

i=1 ri(y)!)(∏2
j=1 cj(y)!)

[(t + 1)!]2
.

If we assume that, a priori, P(M0) = P(M1) = 1/2, then for any
training sample size t, the posterior probability of the null is
given by P(M0|y, t) = 1/(1 + B10(y, t)).

3.2 One Margin Fixed

In this case the sampling scheme is that of sampling from two
binomial distributions, B(y1|n1,p1) and B(y2|n2,p2), where n1
and n2 are fixed. The interest is in testing

H0 : p1 = p2 versus H1 : p1 �= p2,

which is the problem of choosing between the null model

M0 : {B(y1|n1,p0)B(y2|n2,p0),π
U(p0) = 1(0,1)(p0)},

and the alternative

M1 : {B(y1|n1,p1)B(y2|n2,p2),

πU(p1,p2) = 1(0,1)(p1)1(0,1)(p2)}.
As in Section 3.1, the conventional uniform prior for (p1,p2)

does not depend on the null model M0, but the intrinsic prior for
(p1,p2) concentrates probability mass around the null hypoth-
esis (the line p1 = p2). With training sample sizes t1 and t2, the
intrinsic prior is a convex combination of the product of beta
distributions, that is,

π I(p1,p2|t1, t2)

=
t1∑

i=0

t2∑

j=0

(
t1
i

)(
t2
j

)
	(i + j + 1)	(t1 + t2 − i − j + 1)

	(t1 + t2 + 2)

× Be(p1|i + 1, t1 − i + 1)Be(p2|j + 1, t2 − j + 1),

where the parameters p1 and p2 are not a priori independent.
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Figure 2. Intrinsic prior for (p1,p2) for t1 = 10 and t2 = 10 (left) and the log-Cauchy mixture of Dirichlets of Good and Crook (1987) (right).
The intrinsic prior concentrates mass symmetrically around the line p1 = p2. The recommended prior of Good and Crook is also symmetric
around the line p1 = p2 with a somewhat usual shape, moving mass to the boundaries of the parameter space.

For t1 = t2 = 10, Figure 2(left) displays the intrinsic prior.
The probability mass is concentrated around the line p1 = p2,
and the prior is symmetric around this line. The figure also
shows the recommended prior of Good and Crook (1987), a
log-Cauchy mixture of Dirichlets. Although this prior is also
symmetric around the line p1 = p2, its shape is somewhat un-
usual. In contrast to the intrinsic prior, it does not concentrate
its mass in a neighborhood of the line p1 = p2, but rather puts
more mass on the boundaries.

The posterior probability of the null for the intrinsic priors
(πU(p0),π

I(p1,p2|t1, t2)), conditional on the sample (y1, y2),

is P(M0|y1, y2, t1, t2) = 1/(1 + B10(y1, y2, t1, t2)), where

B10(y1, y2, t1, t2)

=
[

n1 + n2 + 1

(n1 + t1 + 1)(n2 + t2 + 1)

][
(t1 + 1)(t2 + 1)

t1 + t2 + 1

]

×
(

n1 + n2

y1 + y2

) t1∑

i=0

t2∑

j=0

(t1
i

)2(t2
j

)2

(t1+t2
i+j

)(n1+t1
y1+i

)(n2+t2
y2+j

) . (6)

3.3 Consistency

When the sample information is weak, the posterior proba-
bility of the models involved varies as the intrinsic prior varies
through the training sample size t. But as the sample informa-
tion becomes stronger, as it does when the sample size n in-
creases, we expect the posterior probability of the models to
be more robust with respect to t. In particular, as the sample
size n tends to infinity, the sampling distribution should over-
whelm any prior information. Thus we should be able to prove
consistency of the intrinsic Bayesian procedure for any finite
training sample size t. Specifically, for any finite t, we want to
ensure that limn→∞ P(M0|y, t) = 1, when sampling from the
null and limn→∞ P(M1|y, t) = 1 when sampling from the alter-
native. We first consider the case of testing H0 : θ = θ0 versus
H1 : θ �= θ0, where θ is a binomial success probability. We have
the following theorem.

Theorem 1. For testing M0 : B(y|θ0) versus M1 : {B(y|θ),

π I(θ |θ0, t)}, the intrinsic posterior probability is consistent for
any finite training sample size t.

The proof of this theorem is given in Appendix, where we
also extend the result to other cases considered in this arti-
cle.

3.4 Computational Issues

Note that calculating the intrinsic priors necessitates sum-
ming over all tables with table total t. Although this some-
times can be done for the 2 × 2 case, the calculation quickly
becomes impossible in the general case; for example, for the
seventh table in Table 3 (the Mendel data) in Section 4.2, there
are 162,750,684,200,297,895 tables with the same table total
and 2,689,129,357,824 tables with the same row totals. Thus to
calculate the intrinsic priors, we use a Monte Carlo sum, which
we now explain.

Because the space of tables is so large, generating tables uni-
formly will not be efficient, as most of the posterior probability
will be close to the observed table. Thus we use an importance
sampling strategy, taking as a candidate distribution a multino-
mial with cell probabilities equal to the observed table. (In the-
ory, the choice of candidate distribution has no bearing on the
resulting calculation; however, choosing the candidate to have
high probability near the observed table will help the Monte
Carlo convergence.)

For example, as detailed in the Supplementary Materials, the
intrinsic Bayes factor for an a × b table is given by

B10(y, t) = 	(t + ab)

	(t + n + ab)

[
	(n + a)	(n + b)

	(t + a)	(t + b)

]

×
∑

x:∑ xij=t

(
t

x

)
(
∏

ri(x)!)(∏ cj(x)!)
(
∏

ri(y)!)(∏ cj(y)!)

×
∏

(xij + yij)!
∏

xij! . (7)
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Table 2. p-values and posterior probabilities for selected tables from Efron (1996)

Intrinsic

Table Data p-value Uniform t = 1 t = n

34 {20,0;18,5} 0.051 0.215 0.215 0.215
1 {8,7;2,11} 0.054 0.170 0.170 0.253

18 {30,1;23,4} 0.173 0.551 0.551 0.406
38 {43,4;14,5} 0.106 0.395 0.395 0.340
16 {7,4;4,6} 0.395 0.451 0.451 0.497

NOTE: The tables are ordered by p-values, which are calculated using Fisher’s exact test. Posterior probabilities are also shown for the uniform prior and both ends of the intrinsic
range, t = 1 and t = n. Note that the value for t = 1 is identical to that of the uniform prior (which corresponds to t = 0).

For observed data y = {yij} with
∑

ij yij = n, we take a candidate
distribution

x = (xij) ∼ Multinomial(n, θ̂11, . . . , θ̂ab),
(8)

θ̂ij = yij + 1

n + ab
, i = 1, . . . ,a, j = 1, . . . ,b,

where the cell probabilities are slightly modified to avoid zero
entries. We then generate xk, k = 1, . . . ,M, and use the Monte
Carlo average,

B10(y, t) = (t + ab − 1)!
(t + n + ab − 1)!

1

M

M∑

k=1

( t
xk

)
(
∏

ri(xk)!)(∏ cj(xk)!)
(
∏

ri(y)!)(∏ cj(y)!)

×
∏

(xkij + yij)!
∏

xkij !
1

( t
xk

)∏
ij θ̂

xkij
ij

,

to calculate the Bayes factor (7). Calculation of the Monte Carlo
sum is typically fast, and 30,000 random vectors are sufficient
for most tables.

4. EXAMPLES AND EVALUATIONS

In this section we evaluate the performance of the intrinsic
posterior probabilities with a simulation study and a number of
examples. We pay particular attention to the range of posterior
answers to check when robustness is present.

Recall from Section 3 that we derived the intrinsic posterior
probability of the null under two different sampling models,
P1 and P2. Operationally, we found that for the most part, the
posterior probabilities tend to be similar under these two mod-
els. In what follows, we compute all of the posterior probabili-
ties under the sampling model P1, assuming only that the table
total is fixed. In the absence of firm information to the contrary,
this model seems to be the most likely sampling model under
which contingency table data are collected.

The training sample size t has a natural range from 1 to n,
because taking t larger than n concentrates more mass near the
null. Moreover, as t → ∞, the posterior probability of H0 goes
to 1. Thus the behavior of the posterior probability for the range
of t from 1 to n is of interest; if this probability remains flat, then
we interpret this as evidence of robustness.

4.1 2 × 2 Tables

Efron (1996) analyzed data from a multicenter trial to see
whether a new surgical method for ulcers was superior to an
older method (see also Casella 2001). For each of 39 hospitals,

Efron provided a 2 × 2 table, along with the successes and fail-
ures for each of the hospitals. (The notation {a,b; c,d} denotes
a two-way table with first row {a,b} and second row {c,d},
with the rows corresponding to the treatments. Thus in the table
{8,7;2,11}, one treatment had a success rate of 8/15 and the
other treatment had a success rate of 2/13.)

Inspection of these tables reveals much variability in both the
number of patients and the success rates of the table. The first
two tables in Table 2, 34 and 1, suggest an association, a conclu-
sion strongly supported by the intrinsic prior analysis. Through-
out the entire range of t, the posterior probability of H0 remains
<0.5.

The next table, 18, suggests moderate deviation from the null,
and the range of intrinsic posterior probabilities crosses 0.5, in-
dicating nonrobustness of the inference. That is, the data are
not conclusive in either direction, and a firm conclusion cannot
be drawn here. (Recall that we interpret p-values and posterior
probabilities on different scales. Typically, posterior probabil-
ities of H0 < 0.5 are considered evidence against H0, while
p-values of ≤0.05 are considered evidence against H0.) Note
that both the uniform posterior probability and the intrinsic with
t = 1 accept the null hypothesis. This illustrates a property of
priors, such as the uniform, that put a lot of mass at the extremes
of the parameter space. We have observed that such priors tend
to be biased toward H0, but documenting this bias is difficult.

The final two tables, 38 and 16, also represent robust cases.
The intrinsic posterior probabilities are quite flat and never
cross 0.5. Table 38 presents stronger evidence against the null,
while table 16 presents stable but weak evidence against the
null.

In our view, examining the range of the probabilities corre-
sponding to the intrinsic priors is more informative than just
using the uniform prior. The variability of the posterior prob-
ability as a function of t provides much information about the
robustness of our conclusion.

4.2 The Tables of Good and Crook (1987)

Good and Crook (1987) analyzed 21 contingency tables,
many drawn from the literature and some artificial. We rean-
alyzed these tables to demonstrate the performance of our pro-
cedure and also to contrast it with frequentist p-values and the
robust procedure of Good and Crook. Table 3 summarizes the
results for the 21 tables, showing the exact p-values (for 2 × 2
tables, the p-values are calculated using Fisher’s exact test. For
larger tables, the “exact” calculation generates a large sample
(we used 100,000) from all tables with the same margins to use
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Table 3. The 21 tables of Good and Crook (1987)

p-value Post. prob. of H∗
0

Exact
(U)

Exact
(W)

Volume
(U)

Volume
(W)

Good/
Crook

Intrinsic

Table Data t = 1 t = n

1 {10,3;2,15} 0.001 0.000 0.088 0.000 0.015 0.003 0.016
2 {29,33;131,78} 0.028 0.001 0.450 0.027 0.217 0.312 0.257
3 {200,8;182,20} 0.018 0.000 0.488 0.020 0.156 0.361 0.179
4 {105,5;88,11} 0.116 0.012 0.578 0.097 0.294 0.609 0.371
5 {409,3;174,8} 0.005 0.000 0.071 0.005 0.083 0.284 0.078
6 {225,53,206;3,1,12} 0.000 0.000 0.000 0.000 0.125 0.933 0.241
7 {38,60,28;65,138,68;

35,67,30} 0.764 0.452 0.998 0.765 0.123 0.997 0.823
8 {61,12,60;17,6,1;

39,22,7} 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 {17,4,8;5,12,0;10,3,13} 0.000 0.000 0.087 0.000 0.000 0.000 0.000

10 {58,52,1;26,58,3;8,12,9} 0.000 0.000 0.000 0.000 0.303 0.000 0.000
11 {2,2,2;2,2,2;2,2,2} 1.00 0.846 1.00 0.995 0.450 0.648 0.701
12 {6,6,6;6,6,6;6,6,6} 1.00 0.977 1.00 1.00 0.327 0.891 0.839
13 {1,2,3;1,2,3;1,2,3} 1.00 0.817 1.00 0.995 0.500 0.696 0.740
14 {1,5,20;1,5,20;1,5,20} 1.00 0.948 1.00 1.00 0.294 0.988 0.855
15 {5,0,0;5,0,0;5,0,0} 1.00 1.00 1.00 0.985 0.520 0.964 0.872
16 {6,0,0;0,6,0;0,0,6} 0.000 0.000 0.000 0.000 0.000 0.000 0.000
17 {5,1,0;4,0,2;2,4,0} 0.033 0.001 0.301 0.026 0.200 0.080 0.121
18 {68,119,26,7;20,84,17,94;

15,54,14,10;5,29,14,16} 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18A {4,1,1,0;2,3,0,3;

1,2,2,0;0,0,0,1} 0.113 0.009 0.603 0.123 0.277 0.101 0.064
19 Income and no. of children 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 Horsekick data 0.279 0.000 1.00 0.279 0.062 0.021 0.999

NOTE: The p-values were computed using the exact formula (1), adapted to unweighted (U) or weighted (W) p-values or weighted or unweighted volume tests. All simulations used
100,000 iterations. The Good–Crook probabilities are from Good and Crook (1987). The uniform prior corresponds to the intrinsic prior with t = 0. In all calculations, this posterior
probability was identical to that of the intrinsic prior with t = 1, so the column of uniform posterior probabilities is not shown.

as a reference distribution. This is easily done with the R func-
tion chisq.test), the posterior probabilities from Good and
Crook, and the resulting ranges of the posterior probabilities of
the null for intrinsic priors when the concentration parameter t
varies from t = 1 to t = n.

We include the p-values from the frequentist tests described
in Section 1.1, along with a modification of the volume test,
The weights in the volume test tend to correct the excessive
conservativeness of the unweighted test.

4.2.1 Comparison With Frequentist p-Values. Of the four
p-values computed, the volume-unweighted is the more conser-
vative test, accepting the null in all tables except 6,8,10,16,18,

and 19. Both the exact-unweighted and the volume-weighted
provide essentially the same p-value, and they reject the null
in the preceding six tables plus in the additional six tables
1,2,3,5,9, and 17. The exact-weighted is the less-conservative
test, which rejects the null in the preceding 12 tables plus in ta-
bles 4,18A, and 20.

In all cases where the p-values of the exact-unweighted and
volume-weighted were significant, the intrinsic posterior prob-
abilities were <0.5, except in tables 6 (Fienberg data), 18A,
and 20. In tables 6 and 20, robustness of the posterior answers
was not present, and for the sparse table 18A, the disagreement
was not only between the p-values and intrinsic posterior prob-
abilities, but also among the p-values. This suggests that the an-

swer of the exact-unweighted and volume-weighted tests may
be very close to that of the objective Bayesian intrinsic prior.

But this is not the case, and in fact the p-value can be a
poor tool as a measure of the uncertainty of an hypothesis.
For instance, tables 11 and 12 have the same structure; all cells
contain the same counts, clearly favoring the independence be-
tween rows and columns, and the p-values of exact-unweighted
and volume-weighted are equal to 1, even when the sample
sizes are different, and our uncertainty on the null hypotheses
should be larger in table 11 than in table 12. Nevertheless, the
intrinsic posterior probabilities of the null in table 11 are in the
interval (0.648,0.701), and those in table 12 are in the interval
(0.839,0.891). This behavior seems more reasonable than that
of the p-values.

Furthermore, it is well known that the meaning of the
p-values is affected by the dimension of the parameter space of
the models. To correct this, some dimension corrections have
been introduced for testing hypotheses in linear models (e.g.,
Mallows Cp, adjusted R2, Akaike information criterion). (For
discussion on this topic, see Sellke, Bayarri, and Berger 2001;
Girón et al. 2006; Moreno and Girón 2008.) Therefore, the gen-
eral rule of rejecting the null when the p-value is <0.05 does
not take into account that the p-values must be calibrated before
such a rule can be set. For instance, the p-values of the exact-
unweighted and volume-weighted tests for tables 4 and 18A
are approximately 0.11, and the dimensions of the tables are
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2 × 2 and 4 × 4, respectively. The question is whether a p-value
of 0.11 has the same meaning for both tables. We see that the
intrinsic analysis does not provide the same answer for both ta-
bles; for table 4, the answer is nonrobust, but for table 18A, the
rejection of the null is robust.

4.2.2 Comparison With the Good–Crook Procedure. The
Good–Crook robust procedure rejects the null in 20 out of 21
cases, while the intrinsic prior rejects the null in 12 of 21 cases.
The Good–Crook procedure supports only the null in table 15,
for which the intrinsic posterior probabilities are in the interval
(0.872,0.964), giving a robust acceptance of the null. More-
over, all four p-values are almost 1.

Of particular interest are the artificial tables 11–15, where the
results of the Good–Crook robust analysis are surprising and
not in agreement with our results. In each table the rows are ex-
actly the same, and thus all provide evidence for the null, which
is stronger with increasing sample size, and the ranges of the
intrinsic posterior probabilities suggest robustness in accepting
the null for all of them. The Good–Crook robust analysis rejects
the null for tables 11, 12, and 14; provides no conclusion for ta-
ble 13; and weakly accepts H0 in table 15. Good and Crook
explained that “the data suggest that the two-way characteriza-
tion is irrelevant; all 9! permutations of the interior of the table
are the same.” We do not fully understand this reasoning.

4.2.3 Assessing Robustness. To illustrate the effect of vary-
ing the parameter t, we look at Figure 3, which examines the
behavior of four interesting tables from Table 3.

The four tables of Figure 3 illustrate the entire range of possi-
bilities. Some are robust either for or against H0, whereas some
are nonrobust, with conclusions that are dependent on the tails
of the prior. In such cases, (e.g., Fienberg or horsekick), it is
important to reassess the prior, because clearly the data alone
cannot yield a conclusive decision.

An interesting case is provided by the Mendel data (table 7 in
Table 3). The intrinsic Bayesian tests are robust, the range of in-
trinsic posterior probabilities is quite small and accept the null,

Figure 3. Ranges of posterior probabilities of four tables from Ta-
ble 3. The Mendel data are table 7 (robust, evidence in favor of null),
the Fienberg data are table 6 (nonrobust, evidence against the null for
moderate t), the horsekick data are table 20 (nonrobust, evidence in
favor of the null for large t), and data with no other name are table 3
(robust, evidence against the null).

and the p-values strongly support the null hypothesis. The his-
torical consensus supports the null hypothesis (ignoring the de-
bate about “cooked” data). But the Good–Crook robust analy-
sis strongly rejects the null hypothesis, in opposition to what
is commonly concluded about this data set. Good and Crook
defended these conclusions, citing problems with computation
and “flatness” of the margins.

As mentioned earlier, another instance in which the intrin-
sic posterior analysis leads to different conclusions is in table 6
(Bishop, Fienberg, and Holland 1978, p. 387), where the counts
are very unbalanced. Here both the p-value and the Good–
Crook robust analysis reject the null hypothesis, while the in-
trinsic posterior analysis accepts the null when t is small (1 ≤
t ≤ 0.1n) and rejects the null when t is large (0.1n ≤ t ≤ n).
Bishop, Fienberg, and Holland (1978) presented three analyses
of this table, all of which suggested some deviation from the
null.

In contrast, the ranges of the intrinsic posterior probabili-
ties of the null show robustness for most of the tables. Excep-
tions are some small unbalanced tables (4 and 6) and large-
dimensional tables with small sample sizes (e.g., the horsekick
table), where robustness is not present. For these situations, the
message is that the data themselves are not conclusive, and thus
we either need to add subjective information on the concentra-
tion parameter t or to collect more data.

5. DISCUSSION

The analysis of contingency tables is somewhat unique be-
cause of the discrepancy between the sampling model and the
commonly used model for analysis. Specifically, calculating a
test statistic conditional on both margins being fixed is the most
common analysis, but the corresponding sampling model is al-
most impossible to realize. There have been many arguments
both for and against the practice of conditioning on both mar-
gins, and we are not, in any way, joining that discussion. How-
ever, we note that from the frequentist standpoint, one reason
for conditioning on both margins of a table is to obtain a rea-
sonable reference set of tables for comparison with the observed
table. Specifically, not only can the number of unconditional ta-
bles be prohibitively large (as can the number of conditional ta-
bles), but also the unconditional set can contain tables that are
so extreme as to be impossible to ever observe. In our approach,
this problem is handled by the fact that the intrinsic priors give
little weight to such tables.

A Bayesian analysis of independence in a contingency ta-
ble starts with a likelihood and a prior for the unrestricted table,
where the likelihood reflects the sampling model. The prior typ-
ically reflects crude prior beliefs and evaluates the performance
of the resulting procedure. It appears to be widely accepted that
prior beliefs allow the parameters to be a priori dependent, as
emphasized by Howard (1998). This property typically is not
satisfied by the usual default prior for estimation (e.g., uniform),
but is enjoyed by the Good and Crook (1987) priors and the in-
trinsic priors. Another important property, noted by Gunel and
Dickey (1974), is that a prior should give mass to alternatives
that are close to the null. This also can be accomplished with
the intrinsic priors.
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The Good–Crook mixtures of Dirichlet priors give high mass
to extreme tables, as shown in Figure 2. To achieve symme-
try, they take the mixing parameter to be α, the common expo-
nent in the Dirichlet prior, and mix the parameter of the range
(0,∞) using a heavy-tailed density to robustify the mixture.
The intrinsic priors are mixtures as well [see (14) in Supple-
mentary Materials], and the degree of concentration around the
null is accommodated by a discrete parameter, t. To complete
this analogy, we also could mix the parameter t with respect to
a hyperprior with a heavy tail; however, the price that Good–
Crook pays for the robustification of the procedure is to have
a procedure that can result in unreasonable conclusions; this is
apparent in tables 11, 12, 14, and 15.

We have learned the important lesson that our conclusions
regarding independence between rows and columns are more
sensitive to the prior than we suspected. Given the ranges of
intrinsic posterior probabilities, it follows that for some tables,
the conclusion can turn from “accept” to “reject” depending on
the degree of concentration of the prior around the null. Unfor-
tunately, we cannot classify the types of tables leading to this
nonrobust behavior, although we suspect that imbalance and
sparseness in cell sizes contribute to the sensitivity. Nonethe-
less, we do have a diagnostic that alerts us to situations where
consideration of the prior information is an important factor in
the inference.

We also note that, by construction, the range of the concen-
tration parameters t of the intrinsic prior class, from t = 1 to
t = n, is very reasonable. In terms of the tails of the prior, we
range from extremely flat tails (t = 1) to tails equal to those of
the likelihood of the data (t = n). This is a natural bound, be-
cause situations in which more weight would be given to the
prior than to the data are very rare. Thus we have a natural class
of priors for assessing robustness.

The performance of the intrinsic posterior probabilities,
when starting with the unconditional likelihood, is extremely
attractive. It seems to be robust when the data are sufficiently
informative, and when the information that they provide is weak
(often reflected in imbalance or sparseness of the table), we re-
ceive a warning that the resulting tests are not robust, and that
more prior information or more data are needed.

APPENDIX: CONSISTENCY

Here we give a detailed proof of Theorem 1, consistency of the in-
trinsic posterior for the binomial and multinomial cases, and indicate
how the proof extends to more general cases.

A.1 Proof of Theorem 1

For the case of Theorem 1,

H0 : f (y|θ0) vs. H1 : {f (y|θ),π I(θ |t)},
the default marginal distributions are

m0(y) =
(

n

y

)

θ
y
0(1 − θ0)n−y and

(8)

m1(y) =
∫ 1

0

(
n

y

)

θy(1 − θ)n−y dθ = 1

n + 1
,

leading to the intrinsic prior

π I(θ |t) = (t + 1)

t∑

x=0

(
t

x

)

θx
0(1 − θ0)t−x

(
t

x

)

θx(1 − θ)t−x

and intrinsic marginal

mI(y) =
∫ (

n

y

)

θy(1 − θ)n−yπ I(θ)dθ. (9)

We want to show that the Bayes factor B10 = mI(y)/m0(y) goes to 0
under H0 and ∞ under H1. To show that B10 goes to ∞ under H1,
first note that

π I(θ |t) ≥ (t + 1)

t∑

x=0

(
t

x

)

θx
0(1 − θ0)t−xθx(1 − θ)t−x

= (t + 1)[θθ0 + (1 − θ)(1 − θ0)]t
≥ (t + 1)min(θ0,1 − θ0)t = K,

where we have used the fact that
(t
x
) ≥ 1. Thus

B10 ≥ K

∫ (n
y
)
θy(1 − θ)n−y dθ

(n
y
)
θ

y
0(1 − θ0)n−y

= K

n + 1

(n
y
)−1

θ
y
0(1 − θ0)n−y

. (10)

Stirling’s approximation yields
(

n

y

)−1
≈ n1/2

(
y

n

)y+1/2(
n − y

n

)n−y+1/2

≈ n1/2θnθ+1/2(1 − θ)n(1−θ)+1/2,

because y ≈ nθ as n → ∞. Substituting into (10) and rearranging
terms yields

B10 ≥ Kn1/2

n + 1

[
θθ (1 − θ)1−θ

θθ
0 (1 − θ0)1−θ

]n
. (11)

Finally, note that a(θ) = θθ (1−θ)1−θ

θθ
0 (1−θ0)

1−θ
is minimized (and equal to 1) at

θ = θ0. Thus, for any fixed θ in H1, we have that a(θ) = 1 + ε for
some ε > 0, and thus

B10 ≥ Kn1/2

n + 1
(1 + ε)n → ∞,

as n → ∞. Thus, for any θ in H1, the Bayes factor goes to infinity, and
the posterior probability of H0 goes to 0.

To establish consistency if θ0 is the true parameter, we can bound
π I(θ |t) from above, and arrive at (10) as an upper bound (with a dif-
ferent value of K that will depend on t and θ0 but not n or y). Under
H0, y ≈ nθ0, so we obtain the right side of (11) as an upper bound,
but with the expression in square brackets equal to 1, showing that
B10 → 0 as n → ∞. Thus if the parameter value is in H0, then the
Bayes factor goes to 0 and the posterior probability of H0 goes to 1,
and the consistency is established.

A.2 Consistency for the Multinomial Case

For the multinomial case, the arguments are similar to those in Sec-
tion A.1. The models are

M0 : M(x|t,piqj), piqj fixed,

M1 : M(x|t, θij), π(θ) = 	(ab),

t1(x) = 	(ab)

	(t + ab)

(
t

x

)∏

ij

xij!,

where θ is the vector of θij. The intrinsic prior is

π I(θ) = 	(t + ab)
∑

xij

∏
ij(piqj)

xij

∏
ij xij! M(x|t, θij).
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Using similar arguments to those in Section A.1, we can bound π I

either above or below (depending on what is needed) with a bound
independent of θ and n. Denoting this bound by K, the Bayes factor is
thus

B10 ≈ K

∫
M(y|n, θij)dθ

M(y|n,piqj)
= K

	(n + ab)

∏
ij yij!

∏
ij(piqj)

yij
.

Using Stirling’s approximation and replacing yij with nθij yields
∏

ij yij!
	(n + ab)

≈ 1

nab−1

∏

ij

θ
nθij
ij ,

giving the Bayes factor

B10 ≈ K

nab−1

[∏

ij

(
θij

piqj

)θij
]n

.

Under H0, the expression in square brackets is equal to 1, and B10 → 0
as n → ∞. So if H0 is true, then the posterior probability of H0 goes
to 1. If H1 is true, then the expression in square brackets is equal to
1 + ε, for some ε > 0, and B10 → ∞ as n → ∞. This follows from
the fact that for positive constants a1,a2, . . . ,an and b1,b2, . . . ,bn
satisfying

∑
i ai = ∑

i bi = 1,
∏

i(
ai
bi

)ai ≥ 1, with strict inequality un-
less ai = bi for all i. (This is readily verified by taking logs and using
Jensen’s inequality.) So if H1 is true, then the posterior probability of
H0 goes to 0.

A.3 Extensions

So far, we have proved the consistency of the Bayes factor for test-
ing sharp null hypothesis for models such as

M0 : f (y|θ0) vs. M1 : {f (y|θ),π I(θ |θ0, t)}, (12)

where π I(θ |θ0, t) denotes the intrinsic prior for θ conditional on the
null θ0, on the training sample of size t, and f (y|θ) a binomial or
multinomial sampling model. Here we extend consistency to the case
where the null is not a point, but rather a subspace H0 : θ0 ∈ �0 ⊂ �.

The nested Bayesian models are now

M0 : {f (y|θ0),π0(θ0)} vs. M1 : {f (y|θ),π I(θ |t)}, (13)

where π0(θ0) is a probability density, and the intrinsic prior for θ is
given by

π I(θ |t) =
∫

�0

π I(θ |θ0, t)π0(θ0)dθ0 = π1(θ)Ex|θ
t0(x)

t1(x)
,

with m0(x) = ∫
f (x|θ0)π0(θ0)dθ0, m1(x) = ∫

f (x|θ)π(θ)dθ , and
π(θ) the default prior for f (y|θ).

Theorem 2. Assume the following for any θ0 ∈ �0:

(i) the Bayes factor

B10(y; θ0, t) =
∫
� f (y|θ)π I(θ |θ0, t)dθ

f (y|θ0)

is consistent for testing the sharp null hypothesis (12),
(ii) the function f (y|θ0) is a continuous function of θ0,

(iii) the set �0 is a compact set,
(iv)

k′
t = inf

x

t0(x)

f (x|θ0)
> 0, kt = sup

x

t0(x)

f (x|θ0)
< ∞.

Then the Bayes factor for testing (13)

B10(y, t) =
∫
� f (y|θ)π I(θ |t)dθ

∫
�0

f (y|θ0)π(θ0)dθ0
,

is consistent.

Proof. Suppose first that we are sampling from a distribution
f (y|θ∗

0 ), where θ∗
0 is an arbitrary but fixed null point. For sufficiently

large n, we have

B10(y, t) =
∫
� f (y|θ)π I(θ |t)dθ

∫
�0

f (y|θ0)π0(θ0)dθ0

≈ 1

k

∫
� f (y|θ)π I(θ |t)dθ

f (y|θ̂0)π0(θ̂0)
,

where k = ∫
�0

dθ0, and θ̂0 is the maximum likelihood estimator
(MLE) of θ0. Then the intrinsic prior can be bounded as

π I(θ |t) = π1(θ)Ex|θ
f (x|θ̂0)

m1(x)

m0(x)

f (x|θ̂0)

< kmπ1(θ)Ex|θ
f (x|θ̂0)

m1(x)
= kmπ I(θ |θ̂0, t).

Substituting in B10, we have

B10(y, t) <
km

kπ0(θ̂0)

∫
� f (y|θ)π I(θ |θ̂0, t)dθ

f (y|θ̂0)

≈ km

kπ0(θ∗
0 )

∫
� f (y|θ)π I(θ |θ∗

0 , t)dθ

f (y|θ∗
0 )

→ 0,

where the last expression tends to 0 because B10(y; θ∗
0, t) is consistent.

This proves consistency under the null.
Suppose that we are sampling from a distribution f (y|θ∗), where θ∗

is an arbitrary but fixed alternative point. We have

B01(y, t) =
∫
�0

f (y|θ0)π0(θ0)dθ0
∫
� f (y|θ)π I(θ |t)dθ

<
f (y|θ̂0)

∫
� f (y|θ)π I(θ |t)dθ

.

Let θ̃0 denote the limit of the MLE θ̂0 when sampling from θ∗. Then
the intrinsic prior can be written as

π I(θ |t) = π1(θ)Ex|θ
f (x|θ̂0)

m1(x)

m0(x)

f (x|θ̂0)

> k′
mπ1(θ)Ex|θ

f (x|θ̂0)

m1(x)

= k′
mπ I(θ |θ̂0, t).

Substituting in B01, we have, for large n,

B01(y, t) <
1

k′
m

f (y|θ̂0)
∫
� f (y|θ)π I(θ |θ̂0, t)dθ

≈ 1

k′
m

f (y|θ̃0)
∫
� f (y|θ)π I(θ |θ̃0, t)dθ

→ 0,

where the last expression tends to 0 because B01(y;θ̃0, t) is consistent.
This completes the proof of Theorem 2.

Both the binomial and multinomial distributions satisfy the condi-
tions in Theorem 2.

SUPPLEMENTAL MATERIALS

Appendixes B and C: Details of the calculations of the Bayes
factors for general a × b tables (B), and the data for tables 19
and 20 (C) (.pdf file).

[Received February 2008. Revised March 2009.]
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