Introducing Monte Carlo Methods with R

Christian P. Robert George Casella
Université Paris Dauphine University of Florida
xlan@ceremade.dauphine.fr casella@ufl.edu



Monte Carlo Methods with R: Introduction [1]

Based on

e [ntroducing Monte Carlo Methods with R, 2009, Springer-Verlag

e Data and R programs for the course available at
http://www.stat.ufl.edu/ casella/IntroMonte/

ejRse) + 1120y

Robert - Casella Christian P. Robert
Introducing Monte Carlo Methods with R George Casella

Introducing Monte




Monte Carlo Methods with R: Basic R Programming [2]

Chapter 1: Basic R Programming

“You’re missing the big picture,” he told her. “A good album should be
more than the sum of its parts.”

Ian Rankin

Exit Music

This Chapter

» We introduce the programming language R
» Input and output, data structures, and basic programming commands

» The material is both crucial and unavoidably sketchy
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Basic R Programming
Introduction

» This is a quick introduction to R
» There are entire books devoted to R
> R Reference Card
> available at http://cran.r-project.org/doc/contrib/Short-refcard. pdf
» Take Heart!
> The syntax of R is simple and logical
> The best, and in a sense the only, way to learn R is through trial-and-error

» mbedded help commands help() and help.search()

>help.start () opens a Web browser linked to the local manual pages
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Basic R Programming
Why R 7

» There exist other languages, most (all?) of them faster than R, like Matlab, and
even free, like C or Python.

» The language combines a sufficiently high power (for an interpreted language)
with a very clear syntax both for statistical computation and graphics.

» R is a flexible language that is object-oriented and thus allows the manipulation
of complex data structures in a condensed and efficient manner.

» [ts graphical abilities are also remarkable

> Possible interfacing with I4TEXusing the package Sweave.
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Basic R Programming
Why R 7

» R offers the additional advantages of being a free and open-source system

> There is even an R newsletter, R-News

> Numerous (free) Web-based tutorials and user’s manuals
» [t runs on all platforms: Mac, Windows, Linux and Unix

» R provides a powerful interface

> Can integrate programs written in other languages

> Such as C, C++, Fortran, Perl, Python, and Java.

» It is increasingly common to see people who develop new methodology simulta-
neously producing an R package

» Can interface with WinBugs
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Basic R Programming
Getting started

» Type 'demo()’ for some demos; demo (image) and demo (graphics)
» 'help()’ for on-line help, or "help.start()” for an HTML browser interface to help.
» Type 'q() to quit R.

» Additional packages can be loaded via the 1ibrary command, as in

> library(combinat) # combinatorics utilities
> library(datasets) # The R Datasets Package

> There exist hundreds of packages available on the Web.

> install.package("mcsm")

» A library call is required each time R is launched
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Basic R Programming
R objects

» R distinguishes between several types of objects

> scalar, vector, matrix, time series, data frames, functions, or graphics.
> An R object is mostly characterized by a mode

> The different modes are
- null (empty object),
- logical (TRUE or FALSE),
- numeric (such as 3, 0.14159, or 2+sqrt(3)),
- complex, (such as 3-2i or complex(1,4,-2)), and
- character (such as " Blue", "binomial”, "male”, or "y=a+bx"),

» The R function str applied to any R object will show its structure.
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Basic R Programming
Interpreted
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Basic R Programming — The vector class

> a=c(5,5.6,1,4,-5) build the object a containing a numeric vector

\4

al1l]
b=al[2:4]

d=alc(1,3,5)]

2*a

b7%53

of dimension 5 with elements 5, 5.6, 1, 4, -5
display the first element of a

build the numeric vector b of dimension 3

with elements 5.6, 1, 4
build the numeric vector d of dimension 3

with elements 5, 1, =5
multiply each element of a by 2

and display the result
provides each element of b modulo 3
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Basic R Programming
More vector class

> e=3/d build the numeric vector e of dimension 3
and elements 3/5, 3, -3/5
> log(dxe) multiply the vectors d and e term by term

and transform each term into its natural logarithm
> sum(d) calculate the sum of d

> length(d) display the length of d
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> t(d)
> t(d)*e

> t(d)%*x%he

> g=c(sqrt(2),log(10))

> e[d==5]

> al[-3]

> is.vector(d)

Basic R Programming
Even more vector class

transpose d, the result is a row vector
elementwise product between two vectors

with identical lengths
matrix product between two vectors

with identical lengths
build the numeric vector g of dimension 2

and elements v/2, log(10)
build the subvector of e that contains the

components e[i] such that d[i]1=5
create the subvector of a that contains

all components of a but the third.
display the logical expression TRUE if

a vector and FALSE else
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Basic R Programming
Comments on the vector class

» The ability to apply scalar functions to vectors: Major Advantage of R.
>> lgamma(c(3,5,7))
> returns the vector with components (log I'(3), log I'(5), log I'(7)).
» Functions that are specially designed for vectors include
sample, permn, order,sort, and rank
> All manipulate the order in which the components of the vector occur.
> permn is part of the combinat library

» The components of a vector can also be identified by names.

> For a vector x, names (x) is a vector of characters of the same length as x
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Basic R Programming
The matrix, array, and factor classes

» The matrix class provides the R representation of matrices.

» A typical entry is

> x=matrix(vec,nrow=n,ncol=p)

> Creates an n X p matrix whose elements are of the dimension np vector vec
» Some manipulations on matrices

> The standard matrix product is denoted by %*%,

> while * represents the term-by-term product.

> diag gives the vector of the diagonal elements of a matrix

> crossprod replaces the product t (x)%*%y on either vectors or matrices
> crossprod(x,y) more efficient

> apply is easy to use for functions operating on matrices by row or column
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Basic R Programming

Some matrix commands

> xl=matrix(1:20,nrow=5)
> x2=matrix(1:20,nrow=5,byrow=T)

a=x1%*%ht (x2)
c=x1%*x2

dim(x1)

b[,2]
b[c(3,4),]
b[-2,]
rbind(x1,x2)
cbind (x1,x2)
apply(x1,1,sum)

YV V V V V V V V V V

as.matrix(1:10)

build the numeric matrix x1 of dimension

5 X 4 with first row 1, 6, 11, 16

build the numeric matrix x2 of dimension

5 X 4 with first row 1, 2, 3, 4

matrix product
term-by-term product between x1 and x2
display the dimensions of x1

select the second column of b

select the third and fourth rows of b

delete the second row of b

vertical merging of x1 and x2rbind(*)rbind
horizontal merging of x1 and x2rbind(*)rbind
calculate the sum of each row of x1
turn the vector 1:10 into a 10 x 1 matrix

» Lots of other commands that we will see throughout the course
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Basic R Programming

The list and data.frame classes
The Last One

» A list is a collection of arbitrary objects known as its components

> 1li=list(num=1:5,y="color",a=T) create a list with three arguments

» The last class we briefly mention is the data frame

> A list whose elements are possibly made of differing modes and attributes

> But have the same length

> vi=sample(1:12,30,rep=T) simulate 30 independent uniform {1,2,...,12}
> v2=sample (LETTERS[1:10],30,rep=T) simulate 30 independent uniform {a,b, ...., j}
> v3=runif (30) simulate 30 independent uniform [0, 1]

> v4=rnorm(30) simulate 30 independent standard normals

> xx=data.frame(vl,v2,v3,v4) create a data frame

» R code



Monte Carlo Methods with R: Basic R Programming [16]

Probability distributions in R

» R , or the web, has about all probability distributions

» Prefixes: p,d,q, r

Distribution Core Parameters Default Values
Beta beta shapel, shape2

Binomial binom size, prob

Cauchy cauchy location, scale 0,1
Chi-square chisq df

Exponential exp 1/mean 1

F f dfl, df2

Gamma gamma shape,1/scale NA) 1
Geometric geom prob

Hypergeometric hyper m, n, k

Log-normal lnorm mean, sd 0,1
Logistic logis location, scale 0,1
Normal norm mean, sd 0,1
Poisson pois lambda

Student t df

Uniform unif min, max 0,1

Weibull weibull shape
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Basic and not-so-basic statistics
t-test

» Testing equality of two means

> x=rnorm(25) #produces a N(0,1) sample of size 25
> t.test(x)

One Sample t-test

data: x
t = -0.8168, df = 24, p-value = 0.4220

alternative hypothesis: true mean is not equal to O
95 percent confidence interval:

-0.4915103 0.2127705

sample estimates:

mean of x

-0.1393699



Monte Carlo Methods with R: Basic R Programming [18]

Basic and not-so-basic statistics
Correlation

» Correlation

> attach(faithful) #resident dataset
> cor.test(faithfull,1],faithfull,2])

Pearson’s product-moment correlation

data: faithfull, 1] and faithfull, 2]
t = 34.089, df = 270, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.8756964 0.9210652
sample estimates:
cor

0.9008112

» R code
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Basic and not-so-basic statistics
Splines

» Nonparametric regression with loess function or using natural splines

» Relationship between nitrogen level in soil and abundance of a bacteria AOB

» Natural spline fit (dark)
> With ns=2 (linear model)

AOB density

» Loess fit (brown) with span=1.25

» R code

.
.
T
0

Nitrogen Level
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Basic and not-so-basic statistics
Generalized Linear Models

» Fitting a binomial (logistic) glm to the probability of suffering from diabetes for
a woman within the Pima Indian population

> glm(formula = type ~ bmi + age, family = "binomial", data = Pima.tr)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.7935 -0.8368 -0.5033 1.0211 2.2531

Coefficients:
Estimate Std. Error z value Pr(>|zl|)
(Intercept) -6.49870 1.17459 -5.533 3.15e-08 *x**

bmi 0.10519 0.02956  3.558 0.000373 *x*x
age 0.07104 0.01538 4.620 3.84e-06 *x*x
Signif. codes: 0 ‘“*%%’ 0.001 ‘*xx’ 0.01 ‘%’ 0.05 “.” 0.1 ° ’ 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 256.41 on 199 degrees of freedom

Residual deviance: 215.93 on 197 degrees of freedom

AIC: 221.93

Number of Fisher Scoring iterations: 4



Monte Carlo Methods with R: Basic R Programming [21]

Basic and not-so-basic statistics
Generalized Linear Models — Comments
» Concluding with the significance both of the body mass index bmi and the age

» Other generalized linear models can be defined by using a different family value
> glm(y “x, family=quasi(var="mu~2", link="log"))
> Quasi-Likelihood also

» Many many other procedures

> Time series, anova,...

» One last one
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Basic and not-so-basic statistics
Bootstrap

» The bootstrap procedure uses the empirical distribution as a substitute for the
true distribution to construct variance estimates and confidence intervals.

> A sample Xq,..., X, is with replacement

> The empirical distribution has a finite but large support made of n" points

» For example, with data y, we can create a bootstrap sample y* using the code
> ystar=sample(y,replace=T)

> For each resample, we can calculate a mean, variance, etc



Relative Frequency
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Basic and not-so-basic statistics

Simple illustration of bootstrap

1.0

0.2

I I I I I I I
4.0 4.5 5.0 5.5 6.0 6.5 7.0

Bootstrap Means

» A histogram of 2500 bootstrap means
» Along with the normal approximation
» Bootstrap shows some skewness

» R code
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Basic and not-so-basic statistics
Bootstrapping Regression

» The bootstrap is not a panacea

> Not always clear which quantity should be bootstrapped
> In regression, bootstrapping the residuals is preferred
» Linear regression
Yij = a+ Pz + &,

a and (8 are the unknown intercept and slope, €;; are the iid normal errors

» The residuals from the least squares fit are given by
Eij = Yij — Q@ — Ba;,
> We bootstrap the residuals
> Produce a new sample (€5;);; by resampling from the &;;’s

> The bootstrap samples are then y; = y;; + €7
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Basic and not-so-basic statistics
Bootstrapping Regression — 2

_ - |
o H | & 7] M
& 7 _
o
g p—
- I
< 7] |
) 3> Q M )
5 1L 5 S » Histogram of 2000 bootstrap samples
g g I g i
o 3 i N .
S - | » We can also get confidence intervals
3 - » R code
o ]
Lo
o — o
[ I I I I | [ I I I I I |
1.5 2.5 3.5 3.8 4.2 4.6 5.0

Intercept Slope
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Basic R Programming
Some Other Stuff

» Graphical facilities

> Can do a lot; see plot and par

» Writing new R functions
>h=function(x) (sin(x) "2+cos(x)~3)~(3/2)
> We will do this a lot

» Input and output in R

>write.table, read.table, scan

» Don’t forget the mcsm package
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Chapter 2: Random Variable Generation

“It has long been an azxtom of mine that the little things are infinitely the
most important.”

Arthur Conan Doyle

A Case of Identity

This Chapter

» We present practical techniques that can produce random variables
» From both standard and nonstandard distributions
» First: Transformation methods

» Next: Indirect Methods - Accept—Reject
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Introduction

» Monte Carlo methods rely on

> The possibility of producing a supposedly endless flow of random variables

> For well-known or new distributions.

» Such a simulation is, in turn,

> Based on the production of uniform random variables on the interval (0, 1).

» We are not concerned with the details of producing uniform random variables

» We assume the existence of such a sequence
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Introduction
Using the R Generators
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Uniform Simulation

» The uniform generator in R is the function runif
» The only required entry is the number of values to be generated.
» The other optional parameters are min and max, with R code

> runif (100, min=2, max=5)

will produce 100 random variables U(2, 5).
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Uniform Simulation
Checking the Generator

» A quick check on the properties of this uniform generator is to

> Look at a histogram of the Xj’s,
> Plot the pairs (X, X;11)

> Look at the estimate autocorrelation function

» [.ook at the R code

>

V V V V V V V

Nsim=10"4 #number of random numbers
x=runif (Nsim)

x1=x[-Nsim] #vectors to plot

x2=x[-1] #adjacent pairs

par (mfrow=c(1,3))

hist(x)

plot(x1l,x2)

act (x)
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Uniform Simulation
Plots from the Generator

Histogram of x

120
|

60 8 100
I

Frequency

20

» Histogram (left), pairwise plot (center), and estimated autocorrelation func-
tion (right) of a sequence of 10 uniform random numbers generated by runif.
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Uniform Simulation
Some Comments

» Remember: runif does not involve randomness per se.
» [t is a deterministic sequence based on a random starting point.

» The R function set.seed can produce the same sequence.

> set.seed(1)

> runif (5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(1)

> runif (5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(2)

> runif (5)

[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481

» Setting the seed determines all the subsequent values
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The Inverse Transform

» The Probability Integral Transform

> Allows us to transform a uniform into any random variable

» For example, if X has density f and cdf F', then we have the relation

Fa)= [ s
and we set U = F/(X) and solve for X

» Lxample 2.1
>If X ~ Exp(l), then F(z)=1—e"

> Solving for z in u =1 — e gives . = —log(1 — u)
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Generating Exponentials

> Nsim=10"4 #number of random variables
> U=runif (Nsim)
> X=-1log(U) #transforms of uniforms
> Y=rexp(Nsim) #exponentials from R
> par (mfrow=c(1,2)) #plots
> hist(X,freq=F,main="Exp from Uniform")
> hist(Y,freq=F,main="Exp from R")
Exp from Uniform Exp fromR
i)
o » Histograms of exponential random variables
. > Inverse transform (right)
* > R command rexp (left)
i, > Exp(1) density on top
e “H““Hh""llhm .............
& |
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Generating Other Random Variables From Uniforms

» This method is useful for other probability distributions

> Ones obtained as a transformation of uniform random variables

» Logistic pdf: f(x) = %[ ‘ (xxui///gﬁ] cdf: F(z) = 1+6_(%3_“)//6'

» Cauchy pdf: f(x) =+ 5, cdf: F(x) = 5 + Zarctan((z — p) /o).

1
7TO'1+($%)
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General Transformation Methods

» When a density f is linked in a relatively simple way

> To another distribution easy to simulate
> Thhis relationship can be use to construct an algorithm to simulate from f

» If the X,’s are iid Exp(1) random variables,

> Three standard distributions can be derived as

Y =2) X;j~y;,, veN,

Y =8) Xj~G(ap), aeN,

j=1
“ X
Y%H;X Be(a,b),  a,beN*,

where N* = {1,2,...}.
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General Transformation Methods
X Random Variables

» For example, to generate yz random variables, we could use the R code

> U=runif (3*x1074)

> U=matrix(data=U,nrow=3) #matrix for sums

> X=-1og(U) #uniform to exponential

> X=2% apply(X,2,sum) #sum up to get chi squares

» Not nearly as efficient as calling rchisq, as can be checked by the R code

> system.time(test1());system.time(test2())
user system elapsed
0.104 0.000 0.107
user system elapsed
0.004 0.000 0.004

» testl corresponds to the R code above

» test2 corresponds to X=rchisq(1074,df=6)
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General Transformation Methods
Comments

» These transformations are quite simple and will be used in our illustrations.
» However, there are limits to their usefulness,

> No odd degrees of freedom

> No normals

» For any specific distribution, efficient algorithms have been developed.

» Thus, if R has a distribution built in, it is almost always worth using
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General Transformation Methods
A Normal Generator

» Box Muller algorithm - two normals from two uniforms

» If Uy and Us are iid U 1)
» The variables X7 and X5
X, =/ —2log(U;) cos(2rls) , Xy = /—2log(U;) sin(27Us) |

» Are iid MV (0, 1) by virtue of a change of variable argument.

» The Box—Muller algorithm is exact, not a crude CLT-based approximation

» Note that this is not the generator implemented in R

> It uses the probability inverse transform

> With a very accurate representation of the normal cdf
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General Transformation Methods
Multivariate Normals

» Can simulate a multivariate normal variable using univariate normals

> Cholesky decomposition of ¥ = AA’
>Y ~ N, (0,1) = AY ~ N,(0,%)

» There is an R package that replicates those steps, called rmnorm

> In the mnormt library

> Can also calculate the probability of hypercubes with the function sadmvn

> sadmvn(low=c(1,2,3) ,upp=c(10,11,12) ,mean=rep(0,3) ,var=B)
[1] 9.012408e-05

attr(,"error")

[1] 1.729111e-08

» B is a positive-definite matrix

» This is quite useful since the analytic derivation of this probability is almost always impossible.
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Discrete Distributions

» To generate discrete random variables we have an “all-purpose” algorithm.
» Based on the inverse transform principle

» To generate X ~ Fpy, where Fp is supported by the integers,

> We can calculate—the probabilities

> Once for all, assuming we can store them

pO:PQ(XSO)a plng(Xgl), p2:P9(X§2)7 I

> And then generate U ~ U] 1) and take
X:kifpk_l <U<pk.
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Discrete Distributions
Binomial

» Example To generate X ~ Bin(10,.3)

> The probability values are obtained by pbinom(k, 10, .3)
Po = 0028, P1 = 0149, P2 = 0382, ...y P10 = 1 ,

> And to generate X ~ P(7), take
po = 0.0009, p; =0.0073, ps=0.0296,...,

> Stopping the sequence when it reaches 1 with a given number of decimals.

> For instance, pyg = 0.999985.

» Check the R code
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Discrete Distributions
Comments

» Specific algorithms are usually more efficient

» Improvement can come from a judicious choice of the probabilities first computed.

» For example, if we want to generate from a Poisson with A = 100

> The algorithm above is woefully ineflicient
> We expect most of our observations to be in the interval A = 3v/\
> For A = 100 this interval is (70, 130)

> Thus, starting at 0 is quite wasteful

» A first remedy is to “ignore” what is outside of a highly likely interval
> In the current example P(X < 70) + P(X > 130) = 0.00268.
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Discrete Distributions
Poisson R Code

» R code that can be used to generate Poisson random variables for large values
of lambda.

» The sequence t contains the integer values in the range around the mean.

Nsim=10"4; lambda=100
spread=3*sqrt (lambda)
t=round (seq(max(0,lambda-spread) ,lambda+spread, 1))
prob=ppois(t, lambda)
X=rep(0,Nsim)
for (i in 1:Nsim){
u=runif (1)
X[i]=t[1]+sum(prob<u)-1 }

+ + VvV V V V VvV V

» The last line of the program checks to see what interval the uniform random
variable fell in and assigns the correct Poisson value to X.
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Discrete Distributions
Comments

» Another remedy is to start the cumulative probabilities at the mode of the dis-
crete distribution

» Then explore neighboring values until the cumulative probability is almost 1.

» Specific algorithms exist for almost any distribution and are often quite fast.
» So, if R has it, use it.

» But R does not handle every distribution that we will need,
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Mixture Representations

» [t is sometimes the case that a probability distribution can be naturally repre-
sented as a mixture distribution

» That is, we can write it in the form
fa) = [ gelply) dy o F@) =3 pifle).
y i€y
> The mixing distribution can be continuous or discrete.

» To generate a random variable X using such a representation,

> we can first generate a variable Y from the mixing distribution

> Then generate X from the selected conditional distribution
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Mixture Representations
Generating the Mixture

» Continuous

fz) = /y g(@ly)ply) dy = y ~ ply) and X ~ f(zly), then X ~ f(z)

» Discrete
fla) = Z pi filr) = i ~p;and X ~ fi(z), then X ~ f(x)
1€)

» Discrete Normal Mixture R code

> p1x N (g, 01) + p2 * N(p2, 02) + ps « N(us, 03)
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Mixture Representations
Continuous Mixtures

» Student’s ¢ density with v degrees of freedom
Xly ~N(O,v/y) and Y ~ xj.
> Generate from a x? then from the corresponding normal distribution

> Obviously, using rt is slightly more efficient

» If X is negative binomial X ~ Neg(n,p)

Density

> R code generates from this mixture

000 001 002 003 0.04 005 0.06
|
——
>

o

10 20 30 40 50
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Accept—Reject Methods
Introduction

» There are many distributions where transform methods fail
» For these cases, we must turn to indirect methods

> We generate a candidate random variable

> Only accept it subject to passing a test

» This class of methods is extremely powerful.

> It will allow us to simulate from virtually any distribution.

» Accept—Reject Methods

> Only require the functional form of the density f of interest
> f = target, g=candidate

» Where it is simpler to simulate random variables from g
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Accept—Reject Methods
Accept—Reject Algorithm

» The only constraints we impose on this candidate density g
> f and g have compatible supports (i.e., g(x) > 0 when f(x) > 0).
> There is a constant M with f(x)/g(x) < M for all x.

» X ~ f can be simulated as follows.

> Generate Y ~ g and, independently, generate U ~ Uy y).

>TFU < L1 set X =Y

> If the inequality is not satisfied, we then discard Y and U and start again.

» Note that M = sup, “j;((z))

» P( Accept ) = % Expected Waiting Time = M
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Accept—Reject Algorithm
R Implementation

Succinctly, the Accept—Reject Algorithm is

Accept—Reject Method

1. Generate Y ~ g, U ~Ujyy;
2. Accept X =Y if U< f(Y)/Mg(Y);

3. Return to 1 otherwise.

» R implementation: If randg generates from g

> u=runif (1)*M
> y=randg(1)
> while (wf(y)/g(y))
{
u=runif (1)*M
y=randg(1)
+

» Produces a single generation y from f
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Accept—Reject Algorithm
Normals from Double Exponentials

» Candidate Y ~ %exp(—\yD

» Target X ~ \/—exp( z?/2)

S oxp(—=12/2) 9

<
1 exp(—|y|) V2

=)

exp(1/2)
> Maximum at y =1
» Accept Y if U < exp(—.5Y? + |Y| — .5)

» Look at R code
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Accept—Reject Algorithm
Theory

» Why does this method work?
» A straightforward probability calculation shows

P(Y < x| Accept ) = P (Y <z|U < ﬂgﬁ)) = P(X <ux)

> Simulating from g, the output of this algorithm is exactly distributed from f.

6

» The Accept—Reject method is applicable in any dimension

» As long as g is a density over the same space as f.

» Only need to know f/g up to a constant

» Only need an upper bound on M
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Accept—Reject Algorithm
Betas from Uniforms

e Generate X ~ beta(a,b).
e No direct method if a and b are not integers.

e Use a uniform candidate
e Fora=27and b=06.3

Histogram of v Histogram of Y
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Frequency
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e
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0.0 0.5
|
M

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

» Acceptance Rate =37%
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Accept—Reject Algorithm
Betas from Betas

e Generate X ~ beta(a,b).
e No direct method if a and b are not integers.

e Use a beta candidate
e for a =2.7Tand b=6.3, Y ~ beta(2,6)

Histogram of v Histogram of Y

o o
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[a] ()]
o o
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o o
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00 02 04 06 08 1.0 00 02 04 06 08 1.0
\Y; Y

» Acceptance Rate =60%
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Accept—Reject Algorithm
Betas from Betas-Details

» Beta density oc 2%(1 — )"
» Can generate if a and b integers

» If not, use candidate with a; and by integers

y' (1 —y) a— ay

maximized at y =
Y a—a;+b—0b

> Need a; < a and b; < b

» LEfficiency T as the candidate gets closer to the target

» [Look at R code
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Accept—Reject Algorithm
Comments

;Some key properties of the Accept—Reject algorithm::
1. Only the ratio f/M is needed

> So the algorithm does not depend on the normalizing constant.

2. The bound f < Mg need not be tight

> Accept—Reject is valid, but less efficient, if M is replaced with a larger
constant.

3. The probability of acceptance is 1/M

> So M should be as small as possible for a given computational effort.
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Chapter 3: Monte Carlo Integration

“Bvery time I think I know what’s going on, suddenly there’s another
layer of complications. I just want this damn thing solved.”

John Scalzi
The Last Colony

This Chapter

» This chapter introduces the major concepts of Monte Carlo methods
» The validity of Monte Carlo approximations relies on the Law of Large Numbers

» The versatility of the representation of an integral as an expectation
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Monte Carlo Integration
Introduction

» We will be concerned with evaluating integrals of the form

| hia) fia) .

> f 1s a density
> We can produce an almost infinite number of random variables from f

» We apply probabilistic results

> Law of Large Numbers

> Central Limit Theorem

» The Alternative - Deterministic Numerical Integration

> R functions area and integrate
> OK in low (one) dimensions

> Usually needs some knowledge of the function
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Classical Monte Carlo Integration
The Monte Carlo Method

» The generic problem: Evaluate

> X takes its values in X

» The Monte Carlo Method
> Generate a sample (X1, ..., X,) from the density f

> Approximate the integral with

_ 1 —
hn== ), hiz;) .
j=1
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Classical Monte Carlo Integration
Validating the Monte Carlo Method

» The Convergence

=2 3 hla) = [ hi) fa) do = E/h(X)

n

S

j=1
> Is valid by the Strong Law of Large Numbers

» When h?(X) has a finite expectation under f,
hn — B f[h(X)]
V' Un

> Follows from the Central Limit Theorem

> Uy = oy Doy [hl(@g) = hal.

— N(0,1)
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Classical Monte Carlo Integration

» [.ook at the function

A First Example

CY'_‘J —
N —
. R
I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
g
|
=1
Lo
oo
T
= I I I I
8] 2000 4000 BO00 S000 10000

» h(x) = [cos(50x) + sin(20x))?
» Monitoring Convergence

» R code
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Classical Monte Carlo Integration

A Caution

CY} —
C\J P
- » The confidence band produced

[ I [ I I [ .

. : . : . O §
N fidence band in the classical
- sense
= |
L R
e
o |
Lot}
S I [ I I [
0 2000 4000 6000 2000 10000

» They are were you to stop at a chosen number of iterations
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Classical Monte Carlo Integration
Comments

» T he evaluation of the Monte Carlo error is a bonus
» |t assumes that v,, is a proper estimate of the variance of h,,

» |f v,, does not converge, converges too slowly, a CLT may not apply
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Classical Monte Carlo Integration
Another Example

» Normal Probability

B(t) = 2 Y Lz 0l0) = [ e

—00

> The exact variance ®(t)[1 — O(t)]/n

> Conservative: Var &~ 1/4n

> For a precision of four decimals

> Want 2 x 1/1/4n < 107* simulations
> Take n = (101)? = 10°

» This method breaks down for tail probabilities
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Importance Sampling
Introduction

» Importance sampling is based on an alternative formulation of the SLLN

B0 = [ #io) L gta) do -, [h<X>f <X>] ;

g(X)

> f 1s the target density
> ¢ is the candidate density
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Importance Sampling
Introduction

» Importance sampling is based on an alternative formulation of the SLLN

B0 = [ (o) 18 o) o -, [PED)

> f is the target density
> g is the candidate density

> Sound Familiar? — Just like Accept—Reject

» SO

1 «— f(X)) NI
- ; S(X) hX;) — Ef[h(X)]

» As long as
> Var (h(X) f(X)/g(X)) < o0
>supp(g) D supp(h X f)
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Importance Sampling
Revisiting Normal Tail Probabilities

» 7 ~ N(0,1) and we are interested in the probability P(Z > 4.5)

» > pnorm(-4.5,1log=T)
[1] -12.59242

» Simulating Z ~ N(0, 1) only produces a hit once in about 3 million iterations!

>

>

» Take g = Exp(1) truncated at 4.5:

-y
_ € _ —(y—4.5)
[ e~rda c
4.5

9(y)

» The IS estimator is
n i no_y2 4
lzf(y()):lzenmm% R code
n = gYW) n < V2T

1=
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Importance Sampling

Normal Tail Variables

Z > a = Use Exponential Candidate
1
exp(—.5a** + a* + a)

» The Importance sampler does not give us a sample = Can use Accept—Reject

» Sample Z ~ N (0, 1),
1 9
ﬁexp(—.&v ) 1 5
= exp(—.0r" +x+a) <
\/ 21 b )< \ 21

exp(—(z — a))

> Where a* = max{a, 1}
» Normals > 20

» The Twilight Zone

08

» R code

08

Density
04

T 1
24 25

02

00
|
N

I
20
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Importance Sampling
Comments

s Importance sampling has little restriction on the choice of the candidate

» ¢ can be chosen from distributions that are easy to simulate

> Or efficient in the approximation of the integral.

» Moreover, the same sample (generated from g) can be used repeatedly

> Not only for different functions h but also for different densities f.
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Importance Sampling
Easy Model - Difficult Distribution

Example: Beta posterior importance approximation

» Have an observation x from a beta B(«, () distribution,

v~ 2O an(y gy o)

[a)1'(5)
» There exists a family of conjugate priors on (a;, 3) of the form
F(Oz + ﬁ) })\ a
(o, B) T
N

where \, xg, yo are hyperparameters,

» The posterior is then equal to

ﬂmﬁMMX{Na+m

P(a)I'(0)
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Importance Sampling
Easy Model - Difficult Distribution -2

» The posterior distribution is intractable

(e, Bla) {F(a )

M1 )
W} [zzo]*[(1 — 2)y0]” .

> Difficult to deal with the gamma functions

> Simulating directly from 7(c, B|z) is impossible.

» What candidate to use?

(=1
=
]

. : ,. » Contour Plot

=
=

» Suggest a candidate?

v -/ » R code

50 100 150 200 250
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Importance Sampling
Easy Model - Difficult Distribution — 3

» Try a Bivariate Student’s T (or Normal)

» Trial and error
> Student’s 7 (3, i, ) distribution with g = (50, 45) and

v _ 220 190
— \ 190 180
> Produce a reasonable fit

>R code

» Note that we are using the fact that
X~ fla) = SPX o~ f (20— p)S (@ — p)



Monte Carlo Methods with R: Monte Carlo Integration [75]

Importance Sampling
Easy Model - Difficult Distribution — Posterior Means

» The posterior mean of « is
M

//om , Blr)dadp = //[ 6\x] (,B)dadB%%ZozZ

1=1

where
i { (O;Rﬁﬂ))}“l [z20]*[(1 — x)yo)”

> gla, 8) = T(3, 1, )
» Note that 7(a, [

x) is not normalized, so we have to calculate

J Jamla, Ble)dadg | ik o i)
[ [ 7l Blz)dadp — M rloibil)

=1 g(a;,B)

» The same samples can be used for every posterior expectation

» R code

.ﬂ-(&i)ﬁi’x)

g(&ia ﬁl)
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Importance Sampling
Probit Analysis

Example: Probit posterior importance sampling approximation

» y are binary variables, and we have covariates x € R? such that
Pr(y =1|lz) =1—Pr(y =0[z) = ®(z'3), [ R,

» We return to the dataset Pima.tr, x=BMI

» A GLM estimation of the model is (using centered x)

>glm(formula = y ~ x, family = binomial(link = "probit"))

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.44957 0.09497 -4.734 2.20e-06 **x
X 0.06479 0.01615 4.011 6.05e-05 x*x*x

Signif. codes: 0 **x 0.001 **x 0.01 *x 0.05 . 0.1 1

So BMI has a significant impact on the possible presence of diabetes.
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Importance Sampling
Bayesian Probit Analysis

» From a Bayesian perspective, we use a vague prior
> 6 = (01, 52) , each having a N'(0, 100) distribution

» With ® the normal cdf, the posterior is proportional to

n
B2 +533

H [D(B1 + (2 — @) Bo] [@(—B1 — (i — T)B) ™" x e 2x100

1=1

» Level curves of posterior

» MLE in the center

» R code




Monte Carlo Methods with R: Monte Carlo Integration [78]

Importance Sampling
Probit Analysis Importance Weights

» Normal candidate centered at the MLE - no finite variance guarantee

» The importance weights are rather uneven, if not degenerate

Importance Weights
g
g _ c
[~
% . &
G
[=]
[=
3
[
o
7 8- 5
S =T
3 £
§ o
w87 @
[=]
2 —
&
8
g | o
= =
I T T T T | 3
0.000 0.002 0.004 0.008 0.008 0.010 -0.80 -0.55 -0.50 0.45 -0.40 0.35

weitlsum({weit) i

» Right side = reweighted candidate sample (R code)

P Somewhat of a failure

0,30
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Chapter 5: Monte Carlo Optimization

“He invented a game that allowed players to predict the outcome?”

Susanna Gregory
To Kill or Cure

This Chapter

» Two uses of computer-generated random variables to solve optimization problems.

» The first use is to produce stochastic search techniques

> To reach the maximum (or minimum) of a function
> Avoid being trapped in local maxima (or minima)

> Are sufficiently attracted by the global maximum (or minimum).

» The second use of simulation is to approximate the function to be optimized.
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Monte Carlo Optimization
Introduction

» Optimization problems can mostly be seen as one of two kinds:

> Find the extrema of a function h(6) over a domain ©

> Find the solution(s) to an implicit equation g(f) = 0 over a domain ©.

» The problems are exchangeable

> The second one is a minimization problem for a function like h(6) = ¢*(0)

> while the first one is equivalent to solving dh(6)/06 = 0

» We only focus on the maximization problem
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Monte Carlo Optimization
Deterministic or Stochastic

» Similar to integration, optimization can be deterministic or stochastic

» Deterministic: performance dependent on properties of the function

> such as convexity, boundedness, and smoothness

» Stochastic (simulation)

> Properties of h play a lesser role in simulation-based approaches.

» Therefore, if A is complex or © is irregular, chose the stochastic approach.
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Monte Carlo Optimization
Numerical Optimization

» R has several embedded functions to solve optimization problems

> The simplest one is optimize (one dimensional)

Example: Maximizing a Cauchy likelihood C(6, 1)
» When maximizing the likelihood of a Cauchy C(6, 1) sample,

. 1
€<9|$1""’$”):H1_|_(x._(9)2’

1=1

» The sequence of maxima (MLEs) — 6* = 0 when n — oo.

» But the journey is not a smooth one...
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Monte Carlo Optimization
Cauchy Likelihood

[
E —
w |
= —
a‘ —
=
= - o
L=
£ = 2
sy
S 2
[ {.? =1
g
= _
-]
% |
T T T T T T T T T T T
o 20 40 a0 a0 100 -10 -5 Q 5 10
INndes =xplot

» MLEs (left) at each sample size, n = 1,500 , and plot of final likelihood (right).
> Why are the MLEs so wiggly?

> The likelihood is not as well-behaved as it seems
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Monte Carlo Optimization
Cauchy Likelihood-2

» The likelihood ¢(0|zy, ..., z,) =]}

» Is like a polynomial of degree 2n
» The derivative has 2n zeros

» Hard to see if n = 500

» Hereisn =5

» R code

1

1=1 1-0—(:62'—9)2

LL

-16 -14 12 -10

[l

-18

-20

1

-10
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Monte Carlo Optimization
Newton-Raphson

» Similarly, nlm is a generic R function using the Newton—-Raphson method

» Based on the recurrence relation

2h )
@H:@—[a J

)| 558

» Where the matrix of the second derivatives is called the Hessian

> This method is perfect when h is quadratic

> But may also deteriorate when h is highly nonlinear

> It also obviously depends on the starting point ) when h has several minima.
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Monte Carlo Optimization
Newton-Raphson; Mixture Model Likelihood

» Bimodal Mixture Model Likelihood 1 N (i1, 1) + 2 N (a2, 1)

Ha

———
= ~1450

—7 B0
— TR ——1 Zh0

— 1ak0

b

» Sequences go to the closest mode

» Starting point (—1,—1) has a steep gradient
> Bypasses the main mode (—0.68, 1.98)

> Goes to other mode (lower likelihood)
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Stochastic search
A Basic Solution
» A natural if rudimentary way of using simulation to find maxgy h(6)

> Simulate points over © according to an arbitrary distribution f positive on ©

> Until a high value of h(6) is observed

Histogram of maxlist

o \/\/J
T T T T
0.0 0.z 0.4 0.6
®

» Recall h(z) = [cos(50z) + sin(20z)]?

» Max=3.8325

3,820 3,825 3,830

» Histogram of 1000 runs

maxlist



Monte Carlo Methods with R: Monte Carlo Optimization [88]

Stochastic search
Stochastic Gradient Methods

» Generating direct simulations from the target can be difficult.

» Different stochastic approach to maximization

> Explore the surface in a local manner. > A Markov Chain

> Can use 041 = 0; + ¢ > The random component €; can be arbitrary

» Can also use features of the function: Newton-Raphson Variation
(9j+1 = 9]' + C\ijh(Qj) ; Q> 0,

> Where VA(6,) is the gradient

> aj the step size
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Stochastic search
Stochastic Gradient Methods-2

» In difficult problems

> The gradient sequence will most likely get stuck in a local extremum of h.

» Stochastic Variation

W0+ 85¢) — Wb + 85¢;) Ah(0;, 8;¢;)

J Qﬁ] J Qﬁ] J
> (/3;) is a second decreasing sequence
> (; is uniform on the unit sphere ||¢|| = 1.

» We then use

O{ .
01 = 0; +— Ah(0;, 5;¢;) ¢
26]-
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Stochastic Search
A Difficult Minimization

» Many Local Minima
» Global Min at (0,0)

» Code in the text
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Stochastic Search
A Difficult Minimization — 2

Scenario | 1 2 3 4

Q; 1/log(j +1) |1/100log(j +1) | 1/(j+1) |1/(j+1)

5) 1/log(j + )" |1/log(j + ) [1/(G+ 171/ + 1)
o, scenari;}1\" _
E_T oy §| Dk > a0 D0 =00

R > 10 /) < o
scenario 3 J— scenario i‘, » Scenarios 1-2: Not enough energy
{ » Scenarios 3-4: Good

¥
1.0 05 00 05 1.0
| 1
|
o
¥
1.0 05 00 05 1.0
[ [

; = T I T
-10 -05 00 05 1.0 -1.0 -05 00 05 1.0

X 4



Monte Carlo Methods with R: Monte Carlo Optimization [92]

Simulated Annealing
Introduction

» This name is borrowed from Metallurgy:

» A metal manufactured by a slow decrease of temperature (annealing)

> Is stronger than a metal manufactured by a fast decrease of temperature.
» The fundamental idea of simulated annealing methods

> A change of scale, or temperature

> Allows for faster moves on the surface of the function h to maximize.

> Rescaling partially avoids the trapping attraction of local maxima.

» As 1" decreases toward 0, the values simulated from this distribution become
concentrated in a narrower and narrower neighborhood of the local maxima of h
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Simulated Annealing
Metropolis Algorithm /Simulated Annealing

o Ah = h(¢) — h(6h)
olIf h(C) > h(By), ( is accepted
oIf h(¢) < h(fy), ¢ may still be accepted

o This allows escape from local maxima
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Simulated Annealing
Metropolis Algorithm - Comments

e Simulated annealing typically modifies the temperature T at each iteration
e [t has the form

e All positive moves accepted
e AsT | 0

o Harder to accept downward moves o No big downward moves
e Not a Markov Chain - difficult to analyze
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Simulated Annealing
Simple Example

- j: : i: | » Trajectory: 1; = (lji)g
) N - w oa oe » Log trajectory also works
: » Can Guarantee Finding Global
79 T Max
- j: : i: » R code
= _DlD T D|4 T D!B T = _DlD T qu T D|B T
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Simulated Annealing
Normal Mixture

» Previous normal mixture

Ha

» Most sequences find max

» They visit both modes

M
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Stochastic Approximation
Introduction

» We now consider methods that work with the objective function h

> Rather than being concerned with fast exploration of the domain ©.

» Unfortunately, the use of those methods results in an additional level of error

> Due to this approximation of h.

» But, the objective function in many statistical problems can be expressed as
> h(x) =E[H(z, 7))

> Thhis is the setting of so-called missing-data models
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Stochastic Approximation
Optimizing Monte Carlo Approximations

» If h(x) = E[H(x, Z)], a Monte Carlo approximation is
R 1 <&
h — H 1)
()= Do)
> Z;’s are generated from the conditional distribution f(z|x).

» This approximation yields a convergent estimator of h(x) for every value of x

> This is a pointwise convergent estimator
> Its use in optimization setups is not recommended
> Changing sample of Z;’s = unstable sequence of evaluations

> And a rather noisy approximation to arg max h(x)
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Stochastic Approximation
Bayesian Probit

Example: Bayesian analysis of a simple probit model

» Y € {0,1} has a distribution depending on a covariate X:
P(Y =1 X=2)=1—F(Y =0|X =x) =0, + 01x) ,

> [llustrate with Pima. tr dataset, Y= diabetes indicator, X=BMI

» Typically infer from the marginal posterior

arg maX/H @(90 + 91$n>yi@<—90 — 91$n>1_yi d91 = argmax h(90>
0o i 0o

> For a flat prior on 6 and a sample (x4, ..., z,).
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Stochastic Approximation
Bayesian Probit — Importance Sampling
» No analytic expression for h

» The conditional distribution of #; given 6, is also nonstandard

> Use importance sampling with a ¢ distribution with 5 df
> Take = 0.1 and ¢ = 0.03 (MLESs)

» Importance Sampling Approximation

M
~ 1 S o N—vis fam _
ho(0p) = i g HCD(QO + 072, D(—0 — 07, Vit (07, o)

m=1 =1



Monte Carlo Methods with R: Monte Carlo Optimization [101]

Stochastic Approximation
Importance Sampling Evaluation

» Plotting this approximation of h with ¢ samples simulated for each value of 6

> The maximization of the represented h function is not to be trusted as an
approximation to the maximization of h.

» But, if we use the same t sample for all values of 6

> We obtain a much smoother function

» We use importance sampling based on a single sample of Z;’s

> Simulated from an importance function g(z) for all values of x
> Fistimate h with

H(x, z).

IIMS

1
m “
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Stochastic Approximation
Importance Sampling Likelihood Representation

Oe+00  Be-51
Y Y |

» Top: 100 runs, different samples

» Middle: 100 runs, same sample

Oe+00  Be-51
Y Y I |

» Bottom: averages over 100 runs

Oe+00  4e-51
1 |

T T T T T
-4 -3 2 -1 o

» The averages over 100 runs are the same - but we will not do 100 runs

» R code: Run pimax(25) from mcsm
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Stochastic Approximation

Comments
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Missing-Data Models and Demarginalization
Introduction

» Missing data models are special cases of the representation h(x) = E[H (z, Z)]

» These are models where the density of the observations can be expressed as

g(z]6) = /Z Fx, 218) dz.

» This representation occurs in many statistical settings

> Censoring models and mixtures
> Latent variable models (tobit, probit, arch, stochastic volatility, etc.)

> Genetics: Missing SNP calls
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Missing-Data Models and Demarginalization
Mixture Model

Example: Normal mixture model as a missing-data model

» Start with a sample (x4, ..., z,)

» Introduce a vector (z1, ..., 2,) € {1,2}" such that
Pg(Zi:1):1—P9(Z¢:2):1/4, XZ‘ZZZZNN(,LLZ,D,

» The (observed) likelihood is then obtained as E[H (x, Z)] for
1 3
H(x,z) H1 S exp { = (i — m)*/2} H2 Jexp {—(zi — p2)?/2} |

U 2= U 2=

» We recover the mixture model
1 3
ZN(Mla 1) -+ ZN(M% 1)

> As the marginal distribution of Xj.
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Missing-Data Models and Demarginalization
Censored-Data Likelihood

Example: Censored—data likelihood
» Censored data may come from experiments

> Where some potential observations are replaced with a lower bound

> Because they take too long to observe.

» Suppose that we observe Y7, ..., Y,,, iid, from f(y — 0)

> And the (n — m) remaining (Y11, ...,Y,) are censored at the threshold a.

» The corresponding likelihood function is

L(ly) =[1 — F(a -6 ”me

> F' is the cdf associated with f
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Missing-Data Models and Demarginalization
Recovering the Observed Data Likelihood

» [f we had observed the last n — m values
>Say z = (Zmat,---,2n), With 2, > a (i=m+1,...,n),

> We could have constructed the (complete data) likelihood

L0y, 2) =[] fwi—0) T] 1= -0).

» Note that

L(6ly) = E["(8ly, Z)] = / L6y, 2)k(zly. 6) dz.

> Where k(zl|y, #) is the density of the missing data
> Conditional on the observed data

> The product of the f(z; — 0)/[1 — F(a — 0)]’s

> f(z — 0) restricted to (a, +00).
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Missing-Data Models and Demarginalization
Comments

» When we have the relationship

g(z]6) = /Z Fx, 218) dz.

> 7, merely serves to simplify calculations
> it does not necessarily have a specific meaning

» We have the complete-data likelihood L¢(0]x,2z)) = f(x,z|0)
> The likelihood we would obtain

> Were we to observe (x,z),the complete data

» REMEMBER:
g(z]6) = /Z Fl,210) dz
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The EM Algorithm
Introduction

» The EM algorithm is a deterministic optimization technique
> Dempster, Laird and Rubin 1977

» Takes advantage of the missing data representation

> Builds a sequence of easier maximization problems

> Whose limit is the answer to the original problem

» We assume that we observe X, . .. ~ ¢g(x|0) that satisfies

g(x|0) = /fx z|0) d

> And we want to compute 0 = arg max L(]x) = arg max g(x|6).
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The EM Algorithm
First Details

» With the relationship g(x|0) = [, f(x,z]0)d
> (X, Z) ~ f(x,z|0)
» The conditional distribution of the missing data Z
> Given the observed data x is
(2], %) = f(x,710)/9(x]6).
» Taking the logarithm of this expression leads to the following relationship
log L(9|X) = ]Ego[log LC(9|X Z)] lEgO[log liEZ|9,X)l,
Obs. Data Complete Data Missing Data

» Where the expectation is with respect to k(z|6y, x).

» [n maximizing log L(6|x), we can ignore the last term
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The EM Algorithm
[terations

» Denoting
Q(0]6o, x) = Eg|log L(0]x, Z)],
» EM algorithm indeed proceeds by maximizing (6|6, x) at each iteration
> [f é(l) = argmax@) (0|6, x), é(0> o é(l)

» Sequence of estimators {é(j)}, where

0(j) = argmax@Q(0]0;_1))
» This iterative scheme
> Contains both an expectation step
> And a maximization step

> Giving the algorithm its name.
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The EM Algorithm
The Algorithm

Pick a starting value é(o) and set m = 0.
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The EM Algorithm
Properties

» Jensen'’s inequality = The likelihood increases at each step of the EM algorithm
L(0j11)|%) > L(f5)]x).
> Equality holding if and only if Q(é(j—l—l)‘é(j)v X) = Q(é@ﬂé(ﬁ, X).

» Every limit point of an EM sequence {é<j)} is a stationary point of L(0]x)

> Not necessarily the maximum likelihood estimator

> In practice, we run EM several times with different starting points.

» Implementing the EM algorithm thus means being able to
(a) Compute the function Q(¢'|0, x)

(b) Maximize this function.
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The EM Algorithm
Censored Data Example

» The complete-data likelihood is

L(Oly,z) ocHeXp{ (y; — 0)?/2} H exp{—(z — 0)*/2},

1=m-+1
» With expected complete-data 10g—hkelihood

Q(ewo,w———z —0) — = Z Eg,[(Z ,

1=1 z m+1
> the Z; are distributed from a normal N (,1) distribution truncated at a.

» M-step (differentiating Q(0]6y, y) in 6 and setting it equal to 0 gives
my + (n —m)Ey[Z)]
n

0 =

> With B[] = 0 + (A=
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The EM Algorithm
Censored Data MLEs

o » EM sequence
-.i"; ? Ny
LN ;‘ gur — g BT g0) 4 pla — 9(‘73)
s &4 / b n n 1 — ®(a—00)
» Climbing the Likelihood
o I » R code
' I | I | |
0.5 0.0 0.5 1.0 1.5
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The EM Algorithm
Normal Mixture

» Normal Mixture Bimodal Likelihood
QO'0,x) = —= ZE@ )+ (1= Z)(z — o)’ x| .

Solving the M-step then provides the closed-form expressions

py =Ky ZZ¢I¢|X /E@ ZZAX
i=1 =1
and
= E, [Zu—zi)mx /Ee > (1= Z)x| .
i=1 i=1
Since

(i — p1)

EQ ZZ X| = )
Zil] (i — ) + 3p(x; — p2)
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The EM Algorithm
Normal Mixture MLESs

» EM five times with various starting points

Ha

» T'wo out of five sequences — higher mode

» Others — lower mode

M
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Monte Carlo EM
Introduction

» [f computation Q(0]6y,x) is difficult, can use Monte Carlo

» For Zy,...,Zp ~ k(z|x, é(m)), maximize

T
. 1 .
Q(0]60,x) = T ;1 log L(0]x, z;)

» Better: Use importance sampling

> Since
9(x|0) f(x,z|0)
arg max L(0|x) = arg max log ———— = arg max log [£ [ x|,
g O] = s o8 ) — T 0 | Fx o)
> Use the approximation to the log-likelihood
T

1 Le(0|x, z;)

log L(0|x) ~ —
0og ( ‘X) T Zz:; LC(9(0)|X, ZZ‘)’
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Monte Carlo EM
Genetics Data

Example: Genetic linkage.
» A classic example of the EM algorithm

» Observations (z1, T9, T3, x4) are gathered from the multinomial distribution

1 01 1 0
M (n,§+z,1(1—9),1(1—9),1).

» LEistimation is easier if the x; cell is split into two cells

> We create the augmented model

0 1 1 0
717 Z(l o 9)7 Z(l o ‘9)7 Z)

N | —

(Zla Zg,xg,xg,le) ~ M (n7
with x1 = 21 + 29.

> Complete-data likelihood: #?27%4(1 — §)*2++3
> Observed-data likelihood: (2 + 0)*10%4(1 — @)*2+*3
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Monte Carlo EM
Genetics Linkage Calculations

» The expected complete log-likelihood function is

Eg[(Z2 4+ x4) log 0 + (z2 + 23) log(1 — 0)] = (2 +090x1 + :U4> log 0 + (x9 + x3) log(1 — @),

> which can easily be maximized in 6, leading to the EM step
A 90 T 90 T
0, = {2+90}/{2+90+$2+$3+$4} i

» Monte Carlo EM: Replace the expectation with
> Zm = % Z;ril Ziy Zi ™ B(I‘l, (90/(2 + (90))

» The MCEM step would then be
é?l p—

Zm
— Y
Zm T Lo+ T3+ T4

which converges to 01 as m grows to infinity.
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Monte Carlo EM
Genetics Linkage MLESs

» Note variation in MCEM sequence

theta

» Can control with 7 simulations

» R code

iterahion
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Monte Carlo EM
Random effect logit model

Example: Random effect logit model
» Random effect logit model,

>y, 1s distributed conditionally on one covariate x;; as a logit model

exp {Bxi; + u; }
P 1] — 1 175 Wiy — ’
(y‘j |x‘7 Y ﬁ) 1 4+ exp {ﬁl’zj -|—u2'}

> wu; ~ N(0,0?) is an unobserved random effect.

> (U, ..., U,) therefore corresponds to the missing data Z
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Monte Carlo EM
Random effect logit model likelihood

» For the complete data likelihood with 6 = (3, o),
Q(Q’\H, X, Y> - Z ijE[ﬁlej + UZ‘ﬁ) o, X, Y]
i.j

— ZE[logl + exp{f'z;; + U;}|B, 0,x,y]
0J

— ) E[U}|B.0,x,y]/20” — nlog o,

> it is impossible to compute the expectations in Uj.

» Were those available, the M-step would be difficult but feasible

» MCEM: Simulate the U;’s conditional on (3, 0, X,y from

exp {Zj YijUi — Uzz/2‘72}
7(ui| B, 0,%,y) [T, L+ exp {Baij + )]
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Monte Carlo EM
Random effect logit MLESs

4]
092 098 104

-3.0 -2.8 -2.8 2.7 -2.6 "2

p
&? R I I I I I
2 4 6 8 10
iteration
» Top: Sequence of B’s from the MCEM
algorithm

» Bottom: Sequence of completed likeli-
hoods

» MCEM sequence

> Increases the number of Monte Carlo steps
at each iteration

» MCEM algorithm

> Does not have EM monotonicity property
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Chapter 6: Metropolis-Hastings Algorithms

“How absurdly simple!”, I cried.
“Quite so!”, said he, a little nettled. “Every problem becomes very child-
1sh when once it 1s explained to you.”
Arthur Conan Doyle
The Adventure of the Dancing Men

This Chapter

» [he first of a of two on simulation methods based on Markov chains

» The Metropolis—Hastings algorithm is one of the most general MCMC algorithms

> And one of the simplest.
» There is a quick refresher on Markov chains, just the basics.
» We focus on the most common versions of the Metropolis—Hastings algorithm.

» We also look at calibration of the algorithm via its acceptance rate
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Metropolis—Hastings Algorithms
Introduction

» We now make a fundamental shift in the choice of our simulation strategy.

> Up to now we have typically generated z:¢d variables

> The Metropolis—Hastings algorithm generates correlated variables

> From a Markov chain

» The use of Markov chains broadens our scope of applications

> The requirements on the target f are quite minimal

> Efficient decompositions of high-dimensional problems

> Into a sequence of smaller problems.

» This has been part of a Paradigm Shift in Statistics
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Metropolis—Hastings Algorithms
A Peek at Markov Chain Theory

» A minimalist refresher on Markov chains
» Basically to define terms
» See Robert and Casella (2004, Chapter 6) for more of the story

» A Markov chain {X®} is a sequence of dependent random variables
X0 xW x@ - ox®
where the probability distribution of X depends only on X1,
» The conditional distribution of X M| XY is a transition kernel K,
x (1) | X0 xM x@) x O K(X(t),X(tH)).

) >t
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Markov Chains
Basics

» For example, a simple random walk Markov chain satisfies
XD = x4 ¢ ¢ ~N(0,1),
> The Markov kernel K (X, X+ corresponds to a (X", 1) density.

» Markov chain Monte Carlo (MCMC) Markov chains typically have a very strong
stability property.

» They have a a stationary probability distribution

> A probability distribution f such that if X® ~ f then XU ~ f so we
have the equation

/X K (e, 9)f @)z = £(y).
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Markov Chains
Properties

» MCMC Markov chains are also irreducible, or else they are useless

> The kernel K allows for free moves all over the state-space

> For any X the sequence {X (t)} has a positive probability of eventually
reaching any region of the state-space

» MCMC Markov chains are also recurrent, or else they are useless

> They will return to any arbitrary nonnegligible set an infinite number of times
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Markov Chains
AR(1) Process
» AR(1) models provide a simple illustration of continuous Markov chains

» Here
X, =0X,_1+¢,, (965)%,

with &, ~ N (0, 0?)

» If the £,,’s are independent

> X, is independent from X,,_o, X,,_3, ... conditionally on X,,_;.

» The stationary distribution ¢(z|u, 72) is

0.2
/\/(0,1_92>,

> which requires 0] < 1.
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Markov Chains
Statistical Language

e We associate the probabilistic language of Markov chains

> With the statistical language of data analysis.

Statistics Markov Chain
marginal distribution < invariant distribution
proper marginals &> positive recurrent

e [f the marginals are not proper, or if they do not exist

> Then the chain is not positive recurrent.

> It is either null recurrent or transient, and both are bad.
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Markov Chains
Pictures of the AR(1) Process

» AR(1) Recurrent and Transient -Note the Scale

6=04 6=0.8
m_
< -
N_
o - N
<! <!
2 n a © 7
> - >
[— N
|
- < |
(T)_ |
I I I I I I I I I I I
-3 -10 1 2 3 -4 -2 0 2
X X
8=0.95 8=1.001
R R
S S
<) <)
2 © 7 e © 7
> >
o
T §
I I I I I I I I I I I
-20 -10 0 10 20 -20 -10 0 10 20
X X

» R code
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Markov Chains
Ergodicity

» In recurrent chains, the stationary distribution is also a lemiting distribution
» [f f is the limiting distribution
XW 5 X ~ f, for any initial value X

> This property is also called ergodicity
» For integrable functions h, the standard average

= ST h(X0) — Egfh(X).

> The Law of Large Numbers

> Sometimes called the Ergodic Theorem
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Markov Chains
In Bayesian Analysis
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Basic Metropolis-Hastings algorithms
Introduction

» The working principle of Markov chain Monte Carlo methods is straightforward

» Given a target density f
> We build a Markov kernel K with stationary distribution f

> Then generate a Markov chain (X®)) — X ~ f
> Integrals can be approximated by to the Ergodic Theorem

» The Metropolis-Hastings algorithm is an example of those methods.

> Given the target density f, we simulate from a candidate ¢(y|x)

> Only need that the ratio f(y)/q(y|x) is known up to a constant
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Basic Metropolis-Hastings algorithms
A First Metropolis-Hastings Algorithm

» ¢ is called the instrumental or proposal or candidate distribution

» p(z,y) is the Metropolis—Hastings acceptance probability

» Looks like Simulated Annealing - but constant temperature

> Metropolis—Hastings cxplores rather than maximizes
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Basic Metropolis-Hastings algorithms
Generating Beta Random Variables

0.7

06
1

0.5

_ | ﬂ » Target density f is the Be(2.7,6.3)

0.4

03

» Notice the

] r N - ’L » Candidate ¢ is uniform

0.1

y - W
fJ ) U » Repeats must be kept!

T T T T T T T
4500 4550 4800 4650 4700 4750 4800

lterations
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Basic Metropolis-Hastings algorithms
Comparing Beta densities

Metropolis-Hastings S - Direct Generation
. w | -{_q\\—'
o | ° / \ » Comparison with independent
(11N |
o sampling
S - ) \
o | l » Histograms indistinguishable
2 ) i |
x\ > Moments match
° - = "
\ > K-S test accepts
° . » R code

0.0 02 0.4 06 0.8 a0 0z 04 0.8 0.8
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Basic Metropolis-Hastings algorithms
A Caution
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Basic Metropolis-Hastings algorithms
Some Comments

» In the symmetric case q(x|y) = q(y|x),

- {12

> The acceptance probability is independent of ¢

» Metropolis—Hastings always accept values of 1y such that

) /a(yl2™) > f(@")/q("|y:)
» Values y; that decrease the ratio mayv also be accepted

» Metropolis—Hastings only depends on the ratios
Flu)/f0)and gy /q(yla).

> Independent of normalizing constants
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Basic Metropolis-Hastings algorithms
The Independent Metropolis—Hastings algorithm

» The Metropolis—Hastings algorithm allows ¢(y|x)

> We can use q(y|x) = g(y), a special case
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Basic Metropolis-Hastings algorithms
Properties of the Independent Metropolis-Hastings algorithm

» Straightforward generalization of the Accept—Reject method

» Candidates are independent, but still a Markov chain

> The Accept—Reject sample is iid, but the Metropolis—Hastings sample is not
> The Accept—Reject acceptance step requires calculating M

> Metropolis—Hastings is Accept—Reject “for the lazy person”
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Basic Metropolis-Hastings algorithms
Application of the Independent Metropolis—Hastings algorithm

» We now look at a somewhat more realistic statistical example

> Get preliminary parameter estimates from a model

> Use an independent proposal with those parameter estimates.

» For example, to simulate from a posterior distribution 7(0|z) o< 7(8)f(x|0)

> Take a normal or a ¢ distribution centered at the MLE 6

> Covariance matrix equal to the inverse of Fisher’s information matrix.
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Independent Metropolis-Hastings algorithm
Braking Data

» The cars dataset relates braking distance (y) to speed (x) in a sample of cars.

» Model
yij = a + bCEz -+ CZIZZ2 -+ 52’]’

120
1
[}

100
!

80
1

» The likelihood function is

Braking Distance
60
i

N/2
(;) exp 552 - (yij —a — bx; — cxi)Q

| | | | | where N = > . n,

5 10 15 20 25
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Independent Metropolis-Hastings algorithm
Braking Data Least Squares Fit

80 100 120

Braking Distance
B0

» Candidate from Least Squares

40

20

R command: x2=x"2; summary(lm(y~x+x2))

Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.63328 14 .80693 0.178 0.860
X 0.88770 2.03282 0.437 0.664
X2 0.10068 0.06592 1.527 0.133

Residual standard error: 15.17 on 47 degrees of freedom
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Independent Metropolis-Hastings algorithm
Braking Data Metropolis Algorithm

120
|

» Candidate: normal centered at the
MLES,

a ~ N(2.63,(14.8)%),
b ~ N(.887,(2.03)%),
¢ ~ N(.100, (0.065)°),

8O 100
| 1

Braking Distance
80
1

» [nverted gamma

| — | | g2~ G(n/2,(n— 3)(15.17)2)

Speed

» See the variability of the curves associated with the simulation.
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Independent Metropolis-Hastings algorithm

Braking Data Coefficients

Histogram of b1hat Histogram of bZhat
_ - _
_ a
=+ i ] —
- S 7]
g u a °
S -
. 57
g a |
d [ T T | I T 1 e [ T | 1
300 -20 10 0 10 20 30 2 0 2 4
b1hat b2hat
Histogram of b3hat Histogram of sZhat
o _ @
- = S _
= ne E |
o [=]
o iz
a 4 e
+ o o |
=]
™ - (=]
(=]
o - a5 -
I T I | T T 1 [=] I T I T 1
005 000 005 040 045 020 025 i 100 200 300 400
b3hat shat

» Note that these are marginal distributions

» Distributions of estimates
» Credible intervals

» Sece the skewness
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Independent Metropolis-Hastings algorithm
Braking Data Assessment

20
1

10

» 50, 000 iterations

» See the repeats

» Intercept may not have converged

o -
[ I I I I ] I ] I I I I
45000 46000 47000 48000 42000 50000 43000 46000 47000 48000 43000 50000

» R code
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Random Walk Metropolis-Hastings
Introduction

» Implementation of independent Metropolis-Hastings can sometimes be difficult

> Construction of the proposal may be complicated

> They ignore local information

» An alternative is to gather information stepwise

> Exploring the neighborhood of the current value of the chain

» Can take into account the value previously simulated to generate the next value

> Gives a more local exploration of the neighborhood of the current value
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Random Walk Metropolis-Hastings
Some Details

» The implementation of this idea is to simulate Y; according to
Y, = XY+ g,
> &4 1s a random perturbation
> with distribution ¢, independent of X )

> Uniform, normal, etc...

» The proposal density q(y|x) is now of the form g(y — x)

> Typically, g is symmetric around zero, satisfying g(—t) = g(¢)

> The Markov chain associated with ¢ is a random walk
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Random Walk Metropolis-Hastings
The Algorithm

» The ¢ chain is a random walk

> Due to the Metropolis—Hastings acceptance step, the {X <t)} chain is not

» The acceptance probability does not depend on ¢

> But different gs result in different ranges and different acceptance rates

» Calibrating the scale of the random walk is for good exploration
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Random Walk Metropolis-Hastings
Normal Mixtures

» Explore likelihood with random walk

» Similar to Simulated Annealing

> But constant temperature (scale)

» Multimodal = Scale is important

> Too small = get stuck

> Too big = miss modes
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Random Walk Metropolis-Hastings

Normal Mixtures - Different Scales

» Left — Right: Scale=1, Scale=2, Scale=3
> Scale=1: Too small, gets stuck
> Scale=2: Just right, finds both modes

> Scale=3: Too big, misses mode

» R code
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Random Walk Metropolis-Hastings
Model Selection or Model Choice

» Random walk Metropolis—Hastings algorithms also apply to discrete targets.

» As an illustration, we consider a regression
> The swiss dataset in R

> = logarithm of the fertility in 47 districts of Switzerland ~ 1888

> The covariate matrix X involves five explanatory variables

> names (swiss)
[1] "Fertility" "Agriculture" "Examination" "Education"
[5] "Catholic"  "Infant.Mortality"

» Compare the 2° = 32 models corresponding to all possible subsets of covariates.

> If we include squares and twoway interactions

> 22V = 1048576 models, same R code
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Random Walk Metropolis-Hastings
Model Selection using Marginals

» Given an ordinary linear regression with n observations,
y|3,0% X ~ N, (X3,0°1,),X is an (n, p) matrix
» The likelihood is
—n/2

1
L(8,0%y, X) = (2r0®) " exp |~y = XP)(y - XP)
» Using Zellner’s g-prior, with the constant g = n

Blo?, X ~ Ny (B,no?(XTX)™Y) and 7(0?|X) o 072

> The marginal distribution of y is a multivariate ¢ distribution,

—n/2
n /

n—+1

m(y|X) o [y' (1 - X(X’X)1X’> y — %HB’X’XB

» Find the model with maximum marginal probability
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Random Walk Metropolis-Hastings
Random Walk on Model Space

» To go from y(t) . ,y(t—H)

> First get a candidate ~*
(1) (1)
y 0
V(t) — 1 — f}/* 0

o) oy

> Choose a component of 4 at random, and flip 1 — 0 or 0 — 1

> Accept the proposed model v* with probability

[ m(y|X,v")
min , 1
m(y|X,~W)

» The candidate is symmetric

» Note: This is not the Metropolis—Hastings algorithm in the book - it is simpler
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Random Walk Metropolis-Hastings
Results from the Random Walk on Model Space

» Top Five Models

AT Marg

7.95
7.19
] 6.27
5.44
5.45

ﬁ

~
1
1
1
1

Marginal

—_ = = O
o O = O O
— = = =

1
1
1
0
0

1

. » Best model excludes
the variable Examination

2000 9200 9400 9600 9800 10000 [> ’y — (17 O7 17 17 1)

Iteration

» Inclusion rates:

» Last iterations of the MH search Agri Exam Educ Cath Inf.Mort

» The chain goes down often 0.661 0.194 1.000 0.904  0.949
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Metropolis-Hastings Algorithms
Acceptance Rates
» Infinite number of choices for the candidate ¢q in a Metropolis—-Hastings algorithm

» Is there and “optimal” choice?

> The choice of ¢ = f, the target distribution? Not practical.

» A criterion for comparison is the acceptance rate

> It can be easily computed with the empirical frequency of acceptance

» In contrast to the Accept—Reject algorithm

> Maximizing the acceptance rate will is not necessarily best

> Especially for random walks

» Also look at autocovariance
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Acceptance Rates
Normals from Double Exponentials

» In the Accept—Reject algorithm
> To generate a N (0, 1) from a double-exponential £(«)

> The choice @ = 1 optimizes the acceptance rate

» In an independent Metropolis—-Hastings algorithm

> We can use the double-exponential as an independent candidate ¢

» Compare the behavior of Metropolis—Hastings algorithm
> When using the £(1) candidate or the £(3) candidate
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Normals from Double Exponentials Comparison
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» L£(1) (black)
> Acceptance Rate = 0.83

» L£(3) (blue)
> Acceptance Rate = 0.47

» L£(3) has terrible acf (right)

» £(3) has not converged
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Acceptance Rates
Normals from Double Exponentials Histograms

0.4
J
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] ° fl _\ h 2 \ » L(1) has converged (gray)
B oo- Z | 5 S » L£(3) not yet there (blue)
li » R code
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Acceptance Rates
Random Walk Metropolis-Hastings

» Independent Metropolis—Hastings algorithms

> Can be optimized or compared through their acceptance rate
> This reduces the number of replicas in the chain

> And reduces the correlation level in the chain

» Not true for other types of Metropolis-Hastings algorithms

> In a random walk, higher acceptance is not always better.

» The historical example of Hastings generates a N (0, 1) from
> Yy =Xy +&

> p(x®, ye) = min{exp{(z\V? — yf) 2}, 1}, & ~U[-0, 4]

> ¢ controls the acceptance rate
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Acceptance Rates
Random Walk Metropolis-Hastings Example

5 5 5
: i P » 0 =0.1,1, and 10
D Ty TTroia wo=01
o] ] ] .
> T autocovariance, | convergence
a a a » o =10
2 2 2 > | autocovariance, 7 convergence
; =T | ; =T | ; T
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Acceptance Rates
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Random Walk Metropolis—Hastings — All of the Details

» Acceptance Rates
>0 =0.1: 0.9832

>0 =1:0.7952
>0 = 10: 0.1512

» Medium rate does better
> lowest better than the highest
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Random Walk Acceptance Rates
Comments

» Random walk Metropolis—Hastings needs careful calibration of acceptance rates

1.0

» High acceptance rate

a - > May not have satisfactory behavior
. ° - > The chain may be moving too slowly
R on the surface of f

S ] IH N » » This is not always the case.

g (UMMIIHIHEY o > f nearly flat = high acceptance OK

T T T T T 1 11 T 1 T T 1
0510 20 30 4500 4700 4900

Lag [teration

» But, unless f is completely flat, parts of the domain may be missed
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Random Walk Acceptance Rates
More Comments

» In contrast, if the average acceptance rate is low

> Successive values of f(y;) are often are small compared to f(x("))

1.0

» Low acceptance =

0.8

> The chain may not see all of f . IL[
> May miss an important but 5 ° I
isolated mode of f S 1 N ‘
» Nonetheless, low acceptance is less ° l” ] |
of an issue o oo
1T 1T 17T 17T 1T T 1 I I I I I I
0510 20 30 4500 4700 4800
Lag [teration

» Golden acceptance rate:
> 1/2 for the models of dimension 1 or 2

> 1/4 in higher dimensions
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Chapter 7: Gibbs Samplers

“Come, Watson , come!” he cried. “The game is afoot.”
Arthur Conan Doyle
The Adventure of the Abbey Grange

This Chapter

» We cover both the two-stage and the multistage Gibbs samplers

» [he two-stage sampler has superior convergence properties

» The multistage Gibbs sampler is the workhorse of the MCMC world
» We deal with missing data and models with latent variables

» And, of course, hierarchical models
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Gibbs Samplers
Introduction
» Gibbs samplers gather most of their calibration from the target density

» They break complex problems (high dimensional) into a series of easier problems

> May be impossible to build random walk Metropolis-Hastings algorithm
» The sequence of simple problems may take a long time to converge

» But Gibbs sampling is an interesting and useful algorithm.

» Gibbs sampling is from the landmark paper by Geman and Geman (1984)

> The Gibbs sampler is a special case of Metropolis—Hastings
» Gelfand and Smith (1990) sparked new interest
> In Bayesian methods and statistical computing

> They solved problems that were previously unsolvable
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The Two-Stage Gibbs Sampler
Introduction
» Creates a Markov chain from a joint distribution
» If two random variables X and Y have joint density f(x,y)
» With corresponding conditional densities fyx and fxy

» Generates a Markov chain (X3, Y;) according to the following steps

Two-stage Gibbs sampler
Take XO = Xy

For t =1,2,..., generate
1. Y ~ fyx(-|ze-r);

2. Xy~ fxp(lye) -
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The Two-Stage Gibbs Sampler
Convergence

» The algorithm straightforward if simulating from both conditionals is feasible
» The stationary distribution is f(z,y)
» Convergence of the Markov chain insured

> Unless the supports of the conditionals are not connected

Example: Normal bivariate Gibbs

» Start with simple illustration, the bivariate normal model:

s} 1))

» The the Gibbs sampler is Given x;, generate

}/;H-l ‘ Ty ~ N(pl't, 1 — /02)7
Xiy1 | Yry1 ~ N(P?Jtﬂa I — /02)-
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The Two-Stage Gibbs Sampler
Bivariate Normal Path

N 5 = » [terations (Xy, Yy) — (Xiiq, Vi)
) ; | it ﬂ'g ' i » Parallel to the axes

_ [ e ,- r » Correlation affects mixing

- i — » R code
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The Two-Stage Gibbs Sampler
Bivariate Normal Convergence

» The subchain (X;); satisfies X; 1| X; = 24 ~ N(p*xy, 1 — pt),
» A recursion shows that

Xi| Xo = o ~ N(p”wo, 1= p") = N(0,1),

» We have converged to the joint distribution and both marginal distributions.

Histogram of X

] N
\

- / \ » Histogram of Marginal

ﬂﬂ{ » 2000 Iterations

Dansity
\_\L

01

00
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The Two-Stage Gibbs Sampler
A First Hierarchical Model

» Gibbs sampling became popular

> Since it was the perfect computational complement to hierarchical models

» A hierarchical model specifies a joint distribution

> As successive layers of conditional distributions

Example: Generating beta-binomial random variables
» Consider the hierarchy
X0 ~ Bin(n,0)
0 ~ Be(a,b),
» Which leads to the joint distribution

[\ T(a+Db) 0y n—a-+b—1
/ <x’9>‘(x>r<a>r<b>9 (1 -6y
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The Two-Stage Gibbs Sampler
Beta-Binomial Conditionals

» The joint distribution

f@%9>::(n)IXa—Fb)gﬁﬂ_wl__

» Has full conditionals
> X |0 ~ Bin(n, 0)
> 0| X ~ Be(X +a,n— X +0)

» This can be seen from

F(z.0) = (n) §<a +0) prva 1
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The Two-Stage Gibbs Sampler
Beta-Binomial Marginals

» The marginal distribution of X is the Beta-Binomial

m(z) = /0 1 (Z) % pria-i(1 — gyn-rti-lgp

» Output from the Gibbs sampler

» X and 6 marginals

Margingl of X Marginal of Theta
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The Two-Stage Gibbs Sampler
A First Normal Hierarchy

» A study on metabolism in 15-year-old females yielded the following data

> x=c(91,504,557,609,693,727,764,803,857,929,970,1043,
+ 1089,1195,1384,1713)

> Their energy intake, measured in megajoules, over a 24 hour period.

» We model
log(X) ~N(0,0%), i=1,...,n

> And complete the hierarchy with

6 ~ N(90,7'2),
o* ~ IG(a,b),

where ZG(a, b) is the inverted gamma distribution.



Monte Carlo Methods with R: Gibbs Samplers [177]

The Two-Stage Gibbs Sampler
6 Conditional

» The posterior distribution o joint distribution is

1 N (012 /(952 L g_012/(9.2 1 2
6.0 x | e w02/ >] y [;6 (0-00)2/(2 >] y [Wel/b ]

(Here x = log(x))

> And now we can get the full conditionals

» O conditional

1 N (i 0)2 /(252 L p_p12/(9,2 1 2
10, 0%%) [ o w022 >] y [_6 (0-80)2/(2 >] y [Wel/b ]

=
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The Two-Stage Gibbs Sampler
o2 Conditional

» Again from the joint distribution

1 2 2 1 2 2 1 2
2 — : .CCZ_H 20’ — 9_9 27 1 bO’

2 n 1 2
o’|x,0 ~ IG §+a,§Z(xi—9) +b],

7

» We now have a Gibbs sampler using

0|oc? ~ rnorm and (1/0?)|0 ~ rgamma

» R code
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The Multistage Gibbs Sampler
Introduction

» There is a natural extension from the two-stage to the multistage Gibbs sampler
» For p > 1, write ¥ = X = (X1,..., X))
> suppose that we can simulate from the full conditional densities

Xilwy, @, o w1, iy, - y Lp filwilry, o, i, iy, 7xp)

» The multistage Gibbs sampler has the following transition from X® to X ¢+

The Multi-stage Gibbs Sampler

At iteration t=1,2,...,, given x(t) = (xﬁt), _ 73715)t))s generate
1. X\ ~ fi@|zy, .. 20
5. X2(t+1) N fg(:vzlxgtﬂ),ﬂ«”g),---,ﬂfg(f))?
t=+1 t+1 t+1
p. XZSJF ) o fp(a:p|as§+ ),...,aféjl)).



Monte Carlo Methods with R: Gibbs Samplers [180]

The Multistage Gibbs Sampler
A Multivariate Normal Example

Example: Normal multivariate Gibbs

» We previously saw a simple bivariate normal example

» Consider the multivariate normal density
(X1, X, oo, X)) ~ N (0, (1 = p)I + pJ),
> [ is the p X p identity matrix
> J is a p X p matrix of ones
> corr(X;, X;) = p for every 7 and j

» The full conditionals are

| (p—Dp _ 1+(p—=2p—(p—1)p°
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The Multistage Gibbs Sampler
Use of the Multivariate Normal Gibbs sampler

» The Gibbs sampler that generates from these univariate normals

> Can then be easily derived

> But it is not needed for this problem

» It is, however, a short step to consider
> The setup where the components are restricted to a subset of RP?.

> If this subset is a hypercube,
ﬁ:H(aiabi)a 7/:177p
1=1

the corresponding conditionals are the normals above restricted to (a;, b;)

» These are easily simulated
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The Multistage Gibbs Sampler
A Hierarchical Model for the Energy Data
» The oneway model can be a hierarchical model.

» Let X;; be the energy intake, ¢ = 1,2 (girl or boy), j = 1,n.
log(Xij) = 6i + i, ,N(0,0%)
» We can complete this model with a hierarchical specification.

» There are different ways to parameterize this model. Here is one:

log(Xij) ~ N(0,0%, i=1,....k j=1,...,n,
0; ~ N(u, ), i=1,...k,
o~ N(Mo,Uz),

0-2 NIg(a’bbl)? 7-2 ~ Ig(a27b2)7 0-3 NIg(CLg,bg).
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The Multistage Gibbs Sampler
Full Conditionals for a Oneway Model

» Now, if we proceed as before we can derive the set of full conditionals

9 9 2 2
o n;T _ o°T
0, ~ N + — X, . oi=1,....k,
Z ( —I—nTQ'u o2+ n72 " o2 + nyT?

72 . kai é 057'2
2+k02 T2+k02 72+/€0/§ ’

MN

o’ ~ n/2+ay, (1/2)) (X5 —6,)>+b |,

ij

72~ k/2+a2, (1/2)) (6; u)2+bg>,

1

02 ~ TG (1/2+ az, (1/2)(1 — po)® +b3) ,

where n =Y. n; and 6 = >, n0;/n.



Monte Carlo Methods with R: Gibbs Samplers [184]
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The Multistage Gibbs Sampler

Output From the Energy Data Analysis

By

_

100 00 300 400 500D &S00
| 1 | ]

| I 1 |
55 G0 6% i 75

I 1 (N N 1
05 10 15 20 25 30 35 40

Fraqu ney

Fraquency
[+] A0 P00 300 400 500 SO0
1 1 L 1 1 1 )

10 20 200 400 =00
L L | | J

By

8% 6D &% 70 7h a0

15

» The top row:
> Mean p and 6 and 6,

> For the girl’s and boy’s
energy

» Bottom row:

> Standard deviations.

» A variation is to give u a flat prior, which is equivalent to setting ai = 00

» R code
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Missing Data and Latent Variables
Introduction

» Missing Data Models start with the relation

glalt) = [ fla,zlp)dz
z
> g(x|0) is typically the sample density or likelihood
> f is arbitrary and can be chosen for convenience

» We implement a Gibbs sampler on f

» Set y = (x,2) = (y1,...,y,) and run the Gibbs sampler

Vilya, .- yp ~ flyilyas -5 9p),
Yé|y17y37 cees Yp f(yQ‘ylay?)? S ayp>7

Yolyi, - s Yp—1 ~ F(Wlyn, - - Yp—1)-
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Missing Data and Latent Variables
Completion Gibbs Sampler

» For g(z]0) = [, f(x,2]0)dz
» And y = (x,2) = (y1,...,¥y,) with

Yilya, - yp ~ fyilye, .-, yp),
Yolyi, yz, -, Yp ~ F(W2ly1,¥3, - -, Up),

Y}?’yla sy Yp—1 ™ f(yp’ylv cee yp—1>'

>Y W = (XU Z0) 5 Y ~ f(x, 2)
>XO Y ~ flx)
> 70 =Y ~ f(2)

» X® and ZW are not Markov chains

> But the subchains converge to the correct distributions
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Missing Data and Latent Variables
Censored Data Models

Example: Censored Data Gibbs

» Recall the censored data likelihood function

g(x|0) = L(0]z) H

» And the complete-data likelihood

n

f(x,2|0) = L(O|z, z) H H e~ 5i=0)/2

1=m-+1

> With 6 ~ w(0) we have the Gibbs sampler
w(0lz,z) and f(z|x,0)

> With stationary distribution 7(6, z|z), the posterior of  and z.
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Missing Data and Latent Variables
Censored Normal

20
J

o Z : » Flat prior 7(0) = 1,
é; g o 9|x’ZNN(mx+(n—m)z’l>’
O = - ] | n n
5 . Zile, 0~ 5 f(qf(; f)9)}
B s e
a z

» Fach Z; must be greater than the truncation point a

» Many ways to generate Z (AR, rtrun from the package bayesm, PIT)

» R code
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Missing Data and Latent Variables
Genetic Linkage

» We previously saw the classic genetic linkage data

» Such models abound

» Here is another, more complex, model

Observed genotype frequencies on blood type data

Genotype | Probability | Observed | Probability | Frequency
AA P A | Pa+2papo| na =186y Dominant allele — missing data
AO 2p APo
BB D B ps+2pBpo| np =38  p Cannot observe AO or BO
BO 2pBPo
AB 2pAPB AB 2papp | nap =13
00O P O %) no = 284

> Observe X ~ My (n;p% + 2papo, ph+ 20BP0, PAPB, Do)
>pa+pp+po =1
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Missing Data and Latent Variables
Latent Variable Multinomial

» The observed data likelihood is

L(pa,pg,po| X) o< (4 + 2p4p0)" A (p% + 2pBpo)"E (papp) ™8 (p})"0

» With missing data (latent variables) Z4 and Zp, the complete-data likelihood is

L(pa, p5,polX, Za, Zp) o< (05)74(2papo)™ A~ “4(p%) 2 (2pppo)"? 7B (paps)" A8 (pg)"©.

» Giving the missing data density
A nA—2 Z np—27
( % ) A( 2p Do ) 4 A( P ) B( 2pBPo ) poap
p% + 2papo p% + 2papo ph + 2pBPo pE + 2pBPo

» And the Gibbs sampler

pa, PB, Po|X, Za, Zp ~ Dirichlet, Z4a, Zp|pa, pp, po ~ Independent Binomial
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Missing Data and Latent Variables
Analysis of Blood Types

P Pe Po
= 2 ——
E_
- 9 - |
2
o -
=
i o~
g - ] ]
- w
z - & -
gu,:_ E 2 5 |
] = =]

1a

AU 1

I T T T 1 r T T T T 1 r T T T T 1
R 0nan o2 024 0.26 .03 .04 0.O& DuoE nar ooa 0.68 0.7 oz 074 076 0.7e

A ol 1-ph - pli

» Eistimated genotype frequencies

» Fisher had first developed these models
> But he could not do the estimation: No EM, No Gibbs in 1930
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Multi-Stage Gibbs Samplers
Hierarchical Structures

» We have seen the multistage Gibbs sampler applied to a number of examples

> Many arising from missing-data structures.
» But the Gibbs sampler can sample from any hierarchical model

» A hierarchical model is defined by a sequence of conditional distributions

> For instance, in the two-level generic hierarchy

Xi ~ fl(x‘9>7 izl)"'an) 92(‘917"'79]))7
‘9] ~ 7TJ<‘9‘7>7 ]: 17"'7p7 Y= (717"'778)7
i o~ g(v), k=1,...,s.

» The joint distribution from this hierarchy is

H fi(z;]0) H 7;(0;]7) H g(v) .

k=
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Multi-Stage Gibbs Samplers
Simulating from the Hierarchy

» With observations x; the full posterior conditionals are

i=1
p
2 o gl [T 051, k=1,...,s.
j=1
> In standard hierarchies, these densities are straightforward to simulate from

> In complex hierarchies, we might need to use a Metropolis—Hastings step

> Main message: full conditionals are easy to write down given the hierarchy

s Note:

» When a full conditional in a Gibbs sampler cannot be simulated directly

> One Metropolis—Hastings step is enough
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Multi-Stage Gibbs Samplers
The Pump Failure Data

Example: Nuclear Pump Failures

» A benchmark hierarchical example in the Gibbs sampling literature

» Describes multiple failures of pumps in a nuclear plant

» Data:
Pamp | 1 2 3 4 5 6 7 8 9 10

Failures | 5 1 D 14 3 19 1 1 4 22
Time 194.32 1572 6288 125.76 524 31.44 1.05 1.05 2.10 10.48

» Model: Failure of ¢®® pump follows a Poisson process

» For time ¢;, the number of failures X; ~ P(\;t;)
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Multi-Stage Gibbs Samplers
The Pump Failure Hierarchy

» The standard priors are gammas, leading to the hierarchical model

Xz' ~ ,P()\Ztl), iZl,...lO,
Ni ~ Gla,B3), i=1,...10,
B ~ G(v,9).

» With joint distribution
10
H {()\ztz)% G_Aiti )\?—16—@\@'} 610a67_16_56
=1

» And full conditionals
)\i‘ﬁ,ti,l‘i ~ Q(xﬂroz,tﬁrﬁ), izl,...lO,

10
ﬁ’)\l,...,)\lo ~ G <7+100{,(5—|—Z Az) .

1=1
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Multi-Stage Gibbs Samplers
The Pump Failure Gibbs Sampler

ke b ]
g
2
g -
g 4
i 2 |
g 8 B g
g g g
2 B 2
£ £ fe

» The Gibbs sampler is easy

ss oo o Py S » Some selected output here
» Nice autocorrelations
] ) ' » R code
Wil ety |"“1”

» Goal of the pump failure data is to identity which pumps are more reliable.

> Get 95% posterior credible intervals for each A; to assess this
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Other Considerations

Reparameterization

» Many factors contribute to the convergence properties of a Gibbs sampler

» Convergence performance may be greatly affected by the parameterization

» High covariance may result in slow exploration.

Simple Example

p=09

15 20 Pl 0

» Autocorrelation for p = .3, .6, .9

o} 1)

» X +Y and X — Y are independent
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Reparameterization
Oneway Models

» Poor parameterization can affect both Gibbs sampling and Metropolis—Hastings

» No general consensus on a solution

> Overall advice = make the components as independent as possible

» Example: Oneway model for the energy data

» Then
» Now
Y ~ N(b;,07%),
0; ~ N(u,72), Yij ~ N(u+06;,0%,
po~ N, o}, 6; ~ N(0,77),

o~ Npo, o).

» 1 at first level
» 1 at second level
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Reparameterization
Oneway Models for the Energy Data
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Reparameterization
Covariances of the Oneway Models

» But look at the covariance matrix of the subchain (p(?), QY), 95“)

Then: Y;; ~ N(6;,07%) Now: Yy ~ N (1 + 6;,0%)
1.056 —0.175 —0.166 1.604 0.681 0.698
—0.175 1.029 0.018 0.681 1.289 0.278 |,
—0.166 0.018  1.026 0.698 0.278 1.304

» So the new model is not as good as the old

» The covariances are all bigger

> It will not mix as fast

» A pity: I like the new model better
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Rao—Blackwellization
Introduction

» We have already seen Rao—Blackwellization in Chapter 4

> Produced improved variance over standard empirical average

» For (X,Y) ~ f(x,y), parametric Rao- Blackwellization is based on
>E[X] = EEX[Y]] =E[(Y)]
> var[o(Y)] < var(X)

Example: Poisson Count Data

» For 360 consecutive time units

» Record the number of passages of individuals per unit time past some sensor.

Number of passages O | 1 |23 4ormore
Number of observations | 139 | 128 | 55 | 25 13
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Rao—Blackwellization
Poisson Count Data

» The data involves a grouping of the observations with four passages or more.

» This can be addressed as a missing-data model

> Assume that the ungrouped observations are X; ~ P(\)
> The likelihood of the model is

5 13
E(}\‘xh o 7x5) o e SATAN\128455% 24253 (1 _ e Z )\Z/Z'>
1=0
for z; = 139,..., 25 = 13.

» For m(A) = 1/X and missing data z = (21, . . ., 213)
> We have a completion Gibbs sampler from the full conditionals

Z0 o~ PO Ley, i=1,...,13,

13
A~ g (313+Z z", 360) .
=1
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Rao—Blackwellization
Comparing Estimators

» The empirical average is 3"/, A"

» The Rao—Blackwellized estimate of A is then given by

1 ¢ (1) (t) 1« =~
- (t) t t - t
E TZ)\ |,zl,...,z13]—360T (313+Z z)
t=1 t=1 1=1
» Note the massive variance reduction.
N it
3 & -

g -

1
Frauangy

r
O 1.0 1.1 1.z (s} So0

P e
:
E-
B
:
2
?
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Generating Truncated Poisson Variables
Using While

» Lets look at a comparison

» R code
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Gibbs Sampling with Improper Priors
Introduction
» There is a particular danger resulting from careless use of the Gibbs sampler.
» The Gibbs sampler is based on conditional distributions

» [t is particularly insidious is that

(1) These conditional distributions may be well-defined
(2) They may be simulated from

(3) But may not correspond to any joint distribution!

» This problem is not a defect of the Gibbs sampler
» It reflects use of the Gibbs sampler when assumptions are violated.

» Corresponds to using Bayesian models with improper priors
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Gibbs Sampling with Improper Priors
A Very Simple Example

» The Gibbs sampler can be constructed directly from conditional distributions

> Leads to carelessness about checking the propriety of the posterior

» The pair of conditional densities X|y ~ Exp(y), Y|z ~ Exp(x),
> Well-defined conditionals with no joint probability distribution.

5000
|

4000
1

» The pictures are absolute rubbish!

3000
1

Fraquency

i » Not a recurrent Markov chain

2000

1000

» Stationary measure = exp(—zy)

o -

oelao zelza 4&123 selza o 1o|ou 2u|oo 3o|m:| 40|on- > NO ﬁnite integral

Index

0.0e+00 50e+25 1.0e+26 1.5e+26 20e+26 2.5e+26

» Histogram and cumulative average
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Gibbs Sampling with Improper Priors
A Very Scary Example

» Oneway model Y;; = p + oy + €5,
> a; ~ N(0,0%) and g;; ~ N(0, 72)

> The Jeffreys (improper) prior for u, o, and 7 is 7(3, 0%, 72) = —

27

o272 -

» Conditional distributions

aily, p, o, 70 ~ N(j(yigu>2a(JT_2+0’2)‘l>,
tTo » Are well-defined
pla,y, ot % ~ N(y—a,m?/1J),

oo, oy, 70~ IG(1/2,(1/2))  of), » Can run a Gibbs sampler

oy, 00~ IG1T)2,(1/2)> " (yij — ai — p)°),
0]

» But there is no proper joint distribution

» Often this is impossible to detect by monitoring the output
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Gibbs Sampling with Improper Priors
A Final Warning

6

» Graphical monitoring cannot exhibit deviant behavior of the Gibbs sampler.

» There are many examples, some published, of null recurrent Gibbs samplers
> Undetected by the user

» The Gibbs sampler is valid only if the joint distribution has a finite integral.
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Chapter 8: Monitoring Convergence of MCMC Algorithms

“Why does he insist that we must have a diagnosis? Some things are not
meant to be known by man.”
Susanna Gregory

An Unholy Alliance

This Chapter

» We look at different diagnostics to check the convergence of an MCMC algorithm
» To answer to question: “When do we stop our MCMC algorithm?”

» We distinguish between two separate notions of convergence:

> Convergence to stationarity

> Convergence of ergodic averages

» We also discuss some convergence diagnostics contained in the coda package
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Monitoring Convergence
Introduction

» The MCMC algorithms that we have seen

> Are convergent because the chains they produce are ergodic.

» Although this is a necessary theoretical validation of the MCMC algorithms

> It is insufficient from the implementation viewpoint

» Theoretical guarantees do not tell us

> When to stop these algorithms and produce our estimates with confidence.
» In practice, this is nearly impossible

» Several runs of your program are usually required until

> You are satisfied with the outcome

> You run out of time and/or patience
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Monitoring Convergence
Monitoring What and Why

» There are three types of convergence for which assessment may be necessary.

T I I I I T
45000 46000 47000 48000 49000 50000

I

I T I I
45000 46000 47000 48000

I I
48000 50000

» Convergence to the
stationary distribution

» Convergence of Averages

» Approximating iid Sampling
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Monitoring Convergence
Convergence to the Stationary Distribution

» First requirement for convergence of an MCMC algorithm
> (2)) ~ f, the stationary distribution
> This sounds like a minimal requirement

» Assessing that ) ~ f is difficult with only a single realization

» A slightly less ambitious goal: Assess the independence from the starting point
29 based on several realizations of the chain using the same transition kernel.

» When running an MCMC algorithm, the important issues are
> The speed of exploration of the support of f

> The degree of correlation between the z(*)’s
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Monitoring Convergence
Tools for AssessingConvergence to the Stationary Distribution
» A major tool for assessing convergence: Compare performance of several chains
» This means that the slower chain in the group governs the convergence diagnostic

» Multiprocessor machines is an incentive for running replicate parallel chains

> Can check for the convergence by using several chains at once

> May not be much more costly than using a single chain

» Looking at a single path of the Markov chain produced by an MCMC algorithm
makes it difficult to assess convergence

» MCMC algorithms suffer from the major defect that

>

» The support of f that has not yet been visited is almost impossible to detect.
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Monitoring Convergence
Convergence of Averages

» A more important convergence issue is convergence of the empirical average

=3 ha) — BES (X))

» T'wo features that distinguish stationary MCMC outcomes from iid ones

> The probabilistic dependence in the sample
> The mixing behavior of the transition,
> That is, how fast the chain explores the support of f
» “Stuck in a mode” might appear to be stationarity

> The missing mass problem again

» Also: The CLT might not be available
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Monitoring Convergence
Approximating iid sampling

» [deally, the approximation to f provided by MCMC algorithms should

> Extend to the (approximate) production of iid samples from f.

» A practical solution to this issue is to use subsampling (or batch sampling)

> Reduces correlation between the successive points of the Markov chain.
» Subsampling illustrates this general feature but it loses in efficiency

» Compare two estimators

> 01: Uses all of the Markov chain

> 09: Uses subsamples

» [t can be shown that
var(dy) < var(ds)
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Monitoring Convergence
The coda package
» Plummer et al. have written an R package called coda
» Contains many of the tools we will be discussing in this chapter
» Download and install with 1ibrary(coda)

» Transform an MCMC output made of a vector or a matrix into an MCMC object
that can be processed by coda, as in

> summary (mcmc (X))
or

> plot (mcmc (X))
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Monitoring Convergence to Stationarity
Graphical Diagnoses

» A first approach to convergence control

> Draw pictures of the output of simulated chains

» Componentwise as well as jointly

> In order to detect deviant or nonstationary behaviors

» coda provides this crude analysis via the plot command

» When applied to an mcmc object

> Produces a trace of the chain across iterations

> And a non-parametric estimate of its density, parameter by parameter
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Monitoring Convergence to Stationarity
Graphical Diagnoses for a Logistic Random Effect Model

Example: Random effect logit model

» Observations ¥;; are modeled conditionally on one covariate x;; as

exp {ﬁi[’w + ’LLZ}

Plyij = lwij, ui, 0) = :
(y] ‘[IZ] u ﬁ) 1—|—6Xp{5£€w+uz}

> wu; ~ N(0,0?) is an unobserved random effect

> This is missing data

» We fit this with a Random Walk Metropolis—Hastings algorithm.

=1,...n,j=1,...
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Monitoring Convergence to Stationarity
Fitting a Logistic Random Effect Model

» The complete data likelihood is

H ( exp {Bxij + u;} )yij ( 1 )1‘%‘7
L\ 1+ exp{fBzi; + u;} 1+ exp {Bxi; + u;}

1]

» This is the target in our Metropolis—Hastings algorithm
(t—1) o2)

7

> Simulate the logit coefficient ﬁ(t) ~ N (ﬁ(t—l)’ 7-2)

> Simulate random effects uz(-t) ~ N(u

> Specify o? and 72

» o2 and 72 affect mixing
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Monitoring Convergence to Stationarity
ACF and Coda

» Trace and acf: » Coda
Trace of var1 Density of var1
o
— w |
[ ]
o = —L o | o =
]
o
o — [ [ ]
= g
@ i = _ \/ o
E G
D = D =
N —
o | =
uy = L UL 1 1L | uy =
[ e}
G‘ ________________ a — PR [ L I i ]
e e I N B e e e — ] I
0 200 00 o 5 15 25 0 200 00 4 G g 10
Index Lag lterations N =901 Bandwidth= 0421

» R code
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Tests of Stationarity
Nonparametric Tests: Kolmogorov-Smirnov

» Other than a graphical check, we can try to test for independence

» Standard non-parametric tests of fit, such as Kolmogorov—Smirnov

> Apply to a single chain to compare the distributions of the two halves

> Also can apply to parallel chains

» There needs to be a correction for the Markov correlation

> The correction can be achieved by introducing a size
» We use
| M
G G
K = MSUP Z]I(O,n)(xgg )> - Zﬂ(o,n)(x;g ))
" g=1 g=1

> With G = batch size, M = sample size
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Tests of Stationarity
Kolmogorov-Smirnov for the Pump Failure Data

Example: Poisson Hierarchical Model

» Consider again the nuclear pump failures

» We monitor the subchain (3%)) produced by the algorithm

> We monitor one chain split into two halves

> We also monitor two parallel chains

» Use R command ks.test

» We will see (next slide) that the results are not clear
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Monitoring Convergence

Kolmogorov-Smirnov p-values for the Pump Failure Data
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Monitoring Convergence
Tests Based on Spectral Analysis

» There are convergence assessments spectral or Fourier analysis

» One is due to Geweke

> Constructs the equivalent of a ¢ test

> Assess equality of means of the first and last parts of the Markov chain.

\/T((SA(SB)/\/OI%JFO%v

TA B

» The test statistic is

> 04 and op are the means from the first and last parts

> o4 and 0% are the spectral variance estimates

» [mplement with geweke.diag and geweke.plot
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Z-score

Monitoring Convergence

Geweke Diagnostics for Pump Failure Data

First iteration in segment

» For \;
> t-statistic = 1.273

> Plot discards successive
beginning segments

> Last z-score only uses last half of chain

» Heidelberger and Welch have a similar test: heidel.diag
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Monitoring Convergence of Averages
Plotting the Estimator

» The initial and most natural diagnostic is to plot the evolution of the estimator

» If the curve of the cumulated averages has not stabilized after T" iterations

> The length of the Markov chain must be increased.

» The principle can be applied to multiple chains as well.

> Can use cumsum, plot (mcmc(coda)), and cumuplot (coda)

014

e e T e e e e

012

010

0.08 0.08
1 |

» For \; from Pump failures

» cumuplot of second half

0.04

0.02
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Monitoring Convergence of Averages

Trace Plots and Density Estimates

» plot (mcmc (lambda)) produces two graphs

Trace of vari

0.20 0.25
| ]

0.15
|

0.10
|

0.05
|

! ! I I T T
] 500 1000 1500 2000 2500

Iterations

]
-—

10

Density of vari

» Trace Plot

» Density Estimate

\

[ - —

000 005 010 015 020 025 0230

M =2501 Bandwidth = 0.005966

» Note: To get second half of chain temp=1lambda[2500:5000], plot (mcmc (temp) )
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Monitoring Convergence of Averages
Multiple Estimates

» Can use several convergent estimators of E([h(f#)] based on the same chain
> Monitor until all estimators coincide

» Recall Poisson Count Data
> Two Estimators of Lambda: Empirical Average and RB

> Convergence Diagnostic — Both estimators converge - 50,000 Iterations

Empirical Swarasge R oo-Bilac kowra il
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Monitoring Convergence of Averages
Computing Multiple Estimates

» Start with a Gibbs sampler 6|n and 7|6

» Typical estimates of h(6)
> The empirical average Sp = % Zthl h(6W)
> The Rao-Blackwellized version S¢ = % Zthl E[h(6)|n")] ,

> Importance sampling: S% = Zthl wy; h(6M),

> wy o< f(0)/g:(01)
> f = target, g = candidate
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Monitoring Convergence of Multiple Estimates
Cauchy Posterior Simulation

» The hierarchical model
X; ~ Cauchy(d), i=1,...,3

0 ~ N(0,07%
» Has posterior distribution
2 o T 1
m (0|2, xa, 25) oc e H (1+ (0 — x;)?)
» We can use a Completion Gibbs sampler
0. 2: ~ Exp <1 + (92— a:i)Q) |
1+ 1222 + 1323 1

9|£U1, Loy, X3, M1, 12,13 ~~ N (

m+ne+n+02" m+mt+n+o?

)
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Monitoring Convergence of Multiple Estimates
Completion Gibbs Sampler

» The Gibbs sampler is based on the latent variables n;, where

1 2 2
—g0i(1+(2i=0)7) 1,y —
/6 "l 1 + (IZ' — (9)2

» With 1
n; ~ Exponential (5(1 + (z; — 9)2)>

» Monitor with three estimates of 6

> Empirical Average
> Rao-Blackwellized

> Importance sample
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Monitoring Convergence of Multiple Estimates
Calculating the Estimates

» Empirical Average

» Rao-Blackwellized

i T 1
9|77177727773 ~ N 12 ' + an

» Importance sampling with Cauchy candidate
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Monitoring Convergence of Multiple Estimates

Monitoring the Estimates
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» When applicable, superior diagnostic to single chain

» Intrinsically conservative

> Speed of convergence determined by slowest estimate

» Emp. Avg
» B
> IS

> Estimates converged

> IS seems most stable
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Monitoring Convergence of Averages
Between and Within Variances

» The Gelman-Rubin diagnostic uses multiple chains

» Based on a between-within variance comparison (anova-like)

> Implemented in coda as gelman.diag(coda) and gelman.plot(coda).

» For m chains {QY)}, L {97(7?}

1 M

M —1

(ém o 5)2 )

=1

> The between-chain variance is By =

> The within-chain variance is Wp = ﬁ Zﬂ]\,{zl ﬁ Zle (97(7? — gm)2

» [f the chains have converged, these variances are the same (anova null hypothesis)
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Monitoring Convergence of Averages
Gelman-Rubin Statistic

» B and W are combined into an F-like statistic

» The shrink factor, defined by

Br
T vr+ 1
W vr + 3 ,

A9
Or

R} =

> 62 = LWy + By,

> F-distribution approximation

» Enjoyed wide use because of simplicity and intuitive connections with anova
» R does converge to 1 under stationarity;,
» However, its distributional approximation relies on normality

» These approximations are at best difficult to satisty and at worst not valid.
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shrink factor

> R

Monitoring Convergence of Averages
Gelman Plot for Pump Failures
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» Three chains for \;

» nsim=1000

» Suggests convergence

» gelman.diag gives

Point est.
1.00

97.5 % quantile
1.01
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We Did All This!!!

L. Intro
2. Generating
3. MCI
N 4. Acceleration

=.—|——
]
H
[T
==

5. Optimization

6. Metropolis

7. Gibbs

8. Convergence
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