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Based on

• Introducing Monte Carlo Methods with R, 2009, Springer-Verlag

• Data and R programs for the course available at
http://www.stat.ufl.edu/ casella/IntroMonte/
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Chapter 1: Basic R Programming

“You’re missing the big picture,” he told her. “A good album should be
more than the sum of its parts.”

Ian Rankin

Exit Music

This Chapter

◮ We introduce the programming language R

◮ Input and output, data structures, and basic programming commands

◮ The material is both crucial and unavoidably sketchy



Monte Carlo Methods with R: Basic R Programming [3]

Basic R Programming

Introduction

◮ This is a quick introduction to R

◮ There are entire books devoted to R

⊲ R Reference Card

⊲ available at http://cran.r-project.org/doc/contrib/Short-refcard.pdf

◮ Take Heart!

⊲ The syntax of R is simple and logical

⊲ The best, and in a sense the only, way to learn R is through trial-and-error

◮ Embedded help commands help() and help.search()

⊲ help.start() opens a Web browser linked to the local manual pages
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Basic R Programming

Why R ?

◮ There exist other languages, most (all?) of them faster than R, like Matlab, and
even free, like C or Python.

◮ The language combines a sufficiently high power (for an interpreted language)
with a very clear syntax both for statistical computation and graphics.

◮ R is a flexible language that is object-oriented and thus allows the manipulation
of complex data structures in a condensed and efficient manner.

◮ Its graphical abilities are also remarkable

⊲ Possible interfacing with LATEXusing the package Sweave.
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Basic R Programming

Why R ?

◮ R offers the additional advantages of being a free and open-source system

⊲ There is even an R newsletter, R-News

⊲ Numerous (free) Web-based tutorials and user’s manuals

◮ It runs on all platforms: Mac, Windows, Linux and Unix

◮ R provides a powerful interface

⊲ Can integrate programs written in other languages

⊲ Such as C, C++, Fortran, Perl, Python, and Java.

◮ It is increasingly common to see people who develop new methodology simulta-
neously producing an R package

◮ Can interface with WinBugs
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Basic R Programming

Getting started

◮ Type ’demo()’ for some demos; demo(image) and demo(graphics)

◮ ’help()’ for on-line help, or ’help.start()’ for an HTML browser interface to help.

◮ Type ’q()’ to quit R.

◮ Additional packages can be loaded via the library command, as in

> library(combinat) # combinatorics utilities

> library(datasets) # The R Datasets Package

⊲ There exist hundreds of packages available on the Web.

> install.package("mcsm")

◮ A library call is required each time R is launched
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Basic R Programming

R objects

◮ R distinguishes between several types of objects

⊲ scalar, vector, matrix, time series, data frames, functions, or graphics.

⊲ An R object is mostly characterized by a mode

⊲ The different modes are

- null (empty object),

- logical (TRUE or FALSE),

- numeric (such as 3, 0.14159, or 2+sqrt(3)),

- complex, (such as 3-2i or complex(1,4,-2)), and

- character (such as ”Blue”, ”binomial”, ”male”, or "y=a+bx"),

◮ The R function str applied to any R object will show its structure.
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Basic R Programming

Interpreted

◮ R operates on those types as a regular function would operate on a scalar

◮ R is interpreted ⇒ Slow

◮ Avoid loops in favor of matrix mainpulations
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Basic R Programming – The vector class

> a=c(5,5.6,1,4,-5) build the object a containing a numeric vector

of dimension 5 with elements 5, 5.6, 1, 4, –5

> a[1] display the first element of a

> b=a[2:4] build the numeric vector b of dimension 3

with elements 5.6, 1, 4

> d=a[c(1,3,5)] build the numeric vector d of dimension 3

with elements 5, 1, –5

> 2*a multiply each element of a by 2

and display the result

> b%%3 provides each element of b modulo 3
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Basic R Programming

More vector class

> e=3/d build the numeric vector e of dimension 3

and elements 3/5, 3, –3/5

> log(d*e) multiply the vectors d and e term by term

and transform each term into its natural logarithm

> sum(d) calculate the sum of d

> length(d) display the length of d
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Basic R Programming

Even more vector class

> t(d) transpose d, the result is a row vector

> t(d)*e elementwise product between two vectors

with identical lengths

> t(d)%*%e matrix product between two vectors

with identical lengths

> g=c(sqrt(2),log(10)) build the numeric vector g of dimension 2

and elements
√

2, log(10)

> e[d==5] build the subvector of e that contains the

components e[i] such that d[i]=5

> a[-3] create the subvector of a that contains

all components of a but the third.

> is.vector(d) display the logical expression TRUE if

a vector and FALSE else
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Basic R Programming

Comments on the vector class

◮ The ability to apply scalar functions to vectors: Major Advantage of R.

⊲ > lgamma(c(3,5,7))

⊲ returns the vector with components (log Γ(3), log Γ(5), log Γ(7)).

◮ Functions that are specially designed for vectors include

sample, permn, order,sort, and rank

⊲ All manipulate the order in which the components of the vector occur.

⊲ permn is part of the combinat library

◮ The components of a vector can also be identified by names.

⊲ For a vector x, names(x) is a vector of characters of the same length as x
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Basic R Programming

The matrix, array, and factor classes

◮ The matrix class provides the R representation of matrices.

◮ A typical entry is

> x=matrix(vec,nrow=n,ncol=p)

⊲ Creates an n × p matrix whose elements are of the dimension np vector vec

◮ Some manipulations on matrices

⊲ The standard matrix product is denoted by %*%,

⊲ while * represents the term-by-term product.

⊲ diag gives the vector of the diagonal elements of a matrix

⊲ crossprod replaces the product t(x)%*%y on either vectors or matrices

⊲ crossprod(x,y) more efficient

⊲ apply is easy to use for functions operating on matrices by row or column
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Basic R Programming

Some matrix commands

> x1=matrix(1:20,nrow=5) build the numeric matrix x1 of dimension

5 × 4 with first row 1, 6, 11, 16

> x2=matrix(1:20,nrow=5,byrow=T) build the numeric matrix x2 of dimension

5 × 4 with first row 1, 2, 3, 4

> a=x1%*%t(x2) matrix product

> c=x1*x2 term-by-term product between x1 and x2

> dim(x1) display the dimensions of x1

> b[,2] select the second column of b

> b[c(3,4),] select the third and fourth rows of b

> b[-2,] delete the second row of b

> rbind(x1,x2) vertical merging of x1 and x2rbind(*)rbind

> cbind(x1,x2) horizontal merging of x1 and x2rbind(*)rbind

> apply(x1,1,sum) calculate the sum of each row of x1

> as.matrix(1:10) turn the vector 1:10 into a 10 × 1 matrix

◮ Lots of other commands that we will see throughout the course
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Basic R Programming

The list and data.frame classes

The Last One

◮ A list is a collection of arbitrary objects known as its components

> li=list(num=1:5,y="color",a=T) create a list with three arguments

◮ The last class we briefly mention is the data frame

⊲ A list whose elements are possibly made of differing modes and attributes

⊲ But have the same length

> v1=sample(1:12,30,rep=T) simulate 30 independent uniform {1, 2, . . . , 12}
> v2=sample(LETTERS[1:10],30,rep=T) simulate 30 independent uniform {a, b, ...., j}
> v3=runif(30) simulate 30 independent uniform [0, 1]

> v4=rnorm(30) simulate 30 independent standard normals

> xx=data.frame(v1,v2,v3,v4) create a data frame

◮ R code
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Probability distributions in R

◮ R , or the web, has about all probability distributions

◮ Prefixes: p, d,q, r

Distribution Core Parameters Default Values

Beta beta shape1, shape2

Binomial binom size, prob

Cauchy cauchy location, scale 0, 1

Chi-square chisq df

Exponential exp 1/mean 1
F f df1, df2

Gamma gamma shape,1/scale NA, 1
Geometric geom prob

Hypergeometric hyper m, n, k

Log-normal lnorm mean, sd 0, 1

Logistic logis location, scale 0, 1
Normal norm mean, sd 0, 1

Poisson pois lambda

Student t df

Uniform unif min, max 0, 1

Weibull weibull shape
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Basic and not-so-basic statistics

t-test

◮ Testing equality of two means

> x=rnorm(25) #produces a N(0,1) sample of size 25

> t.test(x)

One Sample t-test

data: x

t = -0.8168, df = 24, p-value = 0.4220

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.4915103 0.2127705

sample estimates:

mean of x

-0.1393699
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Basic and not-so-basic statistics

Correlation

◮ Correlation

> attach(faithful) #resident dataset

> cor.test(faithful[,1],faithful[,2])

Pearson’s product-moment correlation

data: faithful[, 1] and faithful[, 2]

t = 34.089, df = 270, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.8756964 0.9210652

sample estimates:

cor

0.9008112

◮ R code
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Basic and not-so-basic statistics

Splines

◮ Nonparametric regression with loess function or using natural splines

◮ Relationship between nitrogen level in soil and abundance of a bacteria AOB

◮ Natural spline fit (dark)

⊲ With ns=2 (linear model)

◮ Loess fit (brown) with span=1.25

◮ R code
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Basic and not-so-basic statistics

Generalized Linear Models

◮ Fitting a binomial (logistic) glm to the probability of suffering from diabetes for
a woman within the Pima Indian population

> glm(formula = type ~ bmi + age, family = "binomial", data = Pima.tr)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7935 -0.8368 -0.5033 1.0211 2.2531

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.49870 1.17459 -5.533 3.15e-08 ***

bmi 0.10519 0.02956 3.558 0.000373 ***

age 0.07104 0.01538 4.620 3.84e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 256.41 on 199 degrees of freedom

Residual deviance: 215.93 on 197 degrees of freedom

AIC: 221.93

Number of Fisher Scoring iterations: 4



Monte Carlo Methods with R: Basic R Programming [21]

Basic and not-so-basic statistics

Generalized Linear Models – Comments

◮ Concluding with the significance both of the body mass index bmi and the age

◮ Other generalized linear models can be defined by using a different family value

> glm(y ~x, family=quasi(var="mu^2", link="log"))

⊲ Quasi-Likelihood also

◮ Many many other procedures

⊲ Time series, anova,...

◮ One last one
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Basic and not-so-basic statistics

Bootstrap

◮ The bootstrap procedure uses the empirical distribution as a substitute for the
true distribution to construct variance estimates and confidence intervals.

⊲ A sample X1, . . . , Xn is resampled with replacement

⊲ The empirical distribution has a finite but large support made of nn points

◮ For example, with data y, we can create a bootstrap sample y∗ using the code

> ystar=sample(y,replace=T)

⊲ For each resample, we can calculate a mean, variance, etc
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Basic and not-so-basic statistics

Simple illustration of bootstrap

Bootstrap Means
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◮ A histogram of 2500 bootstrap means

◮ Along with the normal approximation

◮ Bootstrap shows some skewness

◮ R code
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Basic and not-so-basic statistics

Bootstrapping Regression

◮ The bootstrap is not a panacea

⊲ Not always clear which quantity should be bootstrapped

⊲ In regression, bootstrapping the residuals is preferred

◮ Linear regression
Yij = α + βxi + εij,

α and β are the unknown intercept and slope, εij are the iid normal errors

◮ The residuals from the least squares fit are given by

ε̂ij = yij − α̂ − β̂xi,

⊲ We bootstrap the residuals

⊲ Produce a new sample (ε̂∗ij)ij by resampling from the ε̂ij’s

⊲ The bootstrap samples are then y∗ij = yij + ε̂∗ij
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Basic and not-so-basic statistics

Bootstrapping Regression – 2
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◮ Histogram of 2000 bootstrap samples

◮ We can also get confidence intervals

◮ R code
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Basic R Programming

Some Other Stuff

◮ Graphical facilities

⊲ Can do a lot; see plot and par

◮ Writing new R functions

⊲ h=function(x)(sin(x)^2+cos(x)^3)^(3/2)

⊲ We will do this a lot

◮ Input and output in R

⊲ write.table, read.table, scan

◮ Don’t forget the mcsm package
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Chapter 2: Random Variable Generation

“It has long been an axiom of mine that the little things are infinitely the
most important.”

Arthur Conan Doyle

A Case of Identity

This Chapter

◮ We present practical techniques that can produce random variables

◮ From both standard and nonstandard distributions

◮ First: Transformation methods

◮ Next: Indirect Methods - Accept–Reject
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Introduction

◮ Monte Carlo methods rely on

⊲ The possibility of producing a supposedly endless flow of random variables

⊲ For well-known or new distributions.

◮ Such a simulation is, in turn,

⊲ Based on the production of uniform random variables on the interval (0, 1).

◮ We are not concerned with the details of producing uniform random variables

◮ We assume the existence of such a sequence
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Introduction

Using the R Generators

R has a large number of functions that will generate the standard random variables

> rgamma(3,2.5,4.5)

produces three independent generations from a G(5/2, 9/2) distribution

◮ It is therefore,

⊲ Counter-productive

⊲ Inefficient

⊲ And even dangerous,

◮ To generate from those standard distributions

◮ If it is built into R , use it

◮ But....we will practice on these.

◮ The principles are essential to deal with distributions that are not built into R.
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Uniform Simulation

◮ The uniform generator in R is the function runif

◮ The only required entry is the number of values to be generated.

◮ The other optional parameters are min and max, with R code

> runif(100, min=2, max=5)

will produce 100 random variables U(2, 5).
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Uniform Simulation

Checking the Generator

◮ A quick check on the properties of this uniform generator is to

⊲ Look at a histogram of the Xi’s,

⊲ Plot the pairs (Xi, Xi+1)

⊲ Look at the estimate autocorrelation function

◮ Look at the R code

> Nsim=10^4 #number of random numbers

> x=runif(Nsim)

> x1=x[-Nsim] #vectors to plot

> x2=x[-1] #adjacent pairs

> par(mfrow=c(1,3))

> hist(x)

> plot(x1,x2)

> acf(x)
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Uniform Simulation

Plots from the Generator

Histogram of x
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◮ Histogram (left), pairwise plot (center), and estimated autocorrelation func-
tion (right) of a sequence of 104 uniform random numbers generated by runif.
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Uniform Simulation

Some Comments

◮ Remember: runif does not involve randomness per se.

◮ It is a deterministic sequence based on a random starting point.

◮ The R function set.seed can produce the same sequence.

> set.seed(1)

> runif(5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819

> set.seed(1)

> runif(5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819

> set.seed(2)

> runif(5)

[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481

◮ Setting the seed determines all the subsequent values
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The Inverse Transform

◮ The Probability Integral Transform

⊲ Allows us to transform a uniform into any random variable

◮ For example, if X has density f and cdf F , then we have the relation

F (x) =

∫ x

−∞
f(t) dt,

and we set U = F (X) and solve for X

◮ Example 2.1

⊲ If X ∼ Exp(1), then F (x) = 1 − e−x

⊲ Solving for x in u = 1 − e−x gives x = − log(1 − u)
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Generating Exponentials

> Nsim=10^4 #number of random variables

> U=runif(Nsim)

> X=-log(U) #transforms of uniforms

> Y=rexp(Nsim) #exponentials from R

> par(mfrow=c(1,2)) #plots

> hist(X,freq=F,main="Exp from Uniform")

> hist(Y,freq=F,main="Exp from R")

◮ Histograms of exponential random variables

⊲ Inverse transform (right)

⊲ R command rexp (left)

⊲ Exp(1) density on top
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Generating Other Random Variables From Uniforms

◮ This method is useful for other probability distributions

⊲ Ones obtained as a transformation of uniform random variables

◮ Logistic pdf: f(x) = 1
β

e−(x−µ)/β

[1+e−(x−µ)/β ]2
, cdf: F (x) = 1

1+e−(x−µ)/β .

◮ Cauchy pdf: f(x) = 1
πσ

1

1+(x−µ
σ )

2 , cdf: F (x) = 1
2 + 1

πarctan((x − µ)/σ).
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General Transformation Methods

◮ When a density f is linked in a relatively simple way

⊲ To another distribution easy to simulate

⊲ This relationship can be use to construct an algorithm to simulate from f

◮ If the Xi’s are iid Exp(1) random variables,

⊲ Three standard distributions can be derived as

Y = 2

ν∑

j=1

Xj ∼ χ2
2ν , ν ∈ N

∗ ,

Y = β
a∑

j=1

Xj ∼ G(a, β) , a ∈ N
∗ ,

Y =

∑a
j=1 Xj

∑a+b
j=1 Xj

∼ Be(a, b) , a, b ∈ N
∗ ,

where N
∗ = {1, 2, . . .}.
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General Transformation Methods

χ2
6 Random Variables

◮ For example, to generate χ2
6 random variables, we could use the R code

> U=runif(3*10^4)

> U=matrix(data=U,nrow=3) #matrix for sums

> X=-log(U) #uniform to exponential

> X=2* apply(X,2,sum) #sum up to get chi squares

◮ Not nearly as efficient as calling rchisq, as can be checked by the R code

> system.time(test1());system.time(test2())

user system elapsed

0.104 0.000 0.107

user system elapsed

0.004 0.000 0.004

◮ test1 corresponds to the R code above

◮ test2 corresponds to X=rchisq(10^4,df=6)
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General Transformation Methods

Comments

◮ These transformations are quite simple and will be used in our illustrations.

◮ However, there are limits to their usefulness,

⊲ No odd degrees of freedom

⊲ No normals

◮ For any specific distribution, efficient algorithms have been developed.

◮ Thus, if R has a distribution built in, it is almost always worth using
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General Transformation Methods

A Normal Generator

◮ Box–Muller algorithm - two normals from two uniforms

◮ If U1 and U2 are iid U[0,1]

◮ The variables X1 and X2

X1 =
√
−2 log(U1) cos(2πU2) , X2 =

√
−2 log(U1) sin(2πU2) ,

◮ Are iid N (0, 1) by virtue of a change of variable argument.

◮ The Box–Muller algorithm is exact, not a crude CLT-based approximation

◮ Note that this is not the generator implemented in R

⊲ It uses the probability inverse transform

⊲ With a very accurate representation of the normal cdf
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General Transformation Methods

Multivariate Normals

◮ Can simulate a multivariate normal variable using univariate normals

⊲ Cholesky decomposition of Σ = AA′

⊲ Y ∼ Np(0, I) ⇒ AY ∼ Np(0, Σ)

◮ There is an R package that replicates those steps, called rmnorm

⊲ In the mnormt library

⊲ Can also calculate the probability of hypercubes with the function sadmvn

> sadmvn(low=c(1,2,3),upp=c(10,11,12),mean=rep(0,3),var=B)

[1] 9.012408e-05

attr(,"error")

[1] 1.729111e-08

◮ B is a positive-definite matrix

◮ This is quite useful since the analytic derivation of this probability is almost always impossible.



Monte Carlo Methods with R: Random Variable Generation [42]

Discrete Distributions

◮ To generate discrete random variables we have an “all-purpose” algorithm.

◮ Based on the inverse transform principle

◮ To generate X ∼ Pθ, where Pθ is supported by the integers,

⊲ We can calculate—the probabilities

⊲ Once for all, assuming we can store them

p0 = Pθ(X ≤ 0), p1 = Pθ(X ≤ 1), p2 = Pθ(X ≤ 2), . . . ,

⊲ And then generate U ∼ U[0,1] and take

X = k if pk−1 < U < pk.
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Discrete Distributions

Binomial

◮ Example To generate X ∼ Bin(10, .3)

⊲ The probability values are obtained by pbinom(k,10,.3)

p0 = 0.028, p1 = 0.149, p2 = 0.382, . . . , p10 = 1 ,

⊲ And to generate X ∼ P(7), take

p0 = 0.0009, p1 = 0.0073, p2 = 0.0296, . . . ,

⊲ Stopping the sequence when it reaches 1 with a given number of decimals.

⊲ For instance, p20 = 0.999985.

◮ Check the R code



Monte Carlo Methods with R: Random Variable Generation [44]

Discrete Distributions

Comments

◮ Specific algorithms are usually more efficient

◮ Improvement can come from a judicious choice of the probabilities first computed.

◮ For example, if we want to generate from a Poisson with λ = 100

⊲ The algorithm above is woefully inefficient

⊲ We expect most of our observations to be in the interval λ ± 3
√

λ

⊲ For λ = 100 this interval is (70, 130)

⊲ Thus, starting at 0 is quite wasteful

◮ A first remedy is to “ignore” what is outside of a highly likely interval

⊲ In the current example P (X < 70) + P (X > 130) = 0.00268.
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Discrete Distributions

Poisson R Code

◮ R code that can be used to generate Poisson random variables for large values
of lambda.

◮ The sequence t contains the integer values in the range around the mean.

> Nsim=10^4; lambda=100

> spread=3*sqrt(lambda)

> t=round(seq(max(0,lambda-spread),lambda+spread,1))

> prob=ppois(t, lambda)

> X=rep(0,Nsim)

> for (i in 1:Nsim){

+ u=runif(1)

+ X[i]=t[1]+sum(prob<u)-1 }

◮ The last line of the program checks to see what interval the uniform random
variable fell in and assigns the correct Poisson value to X .
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Discrete Distributions

Comments

◮ Another remedy is to start the cumulative probabilities at the mode of the dis-
crete distribution

◮ Then explore neighboring values until the cumulative probability is almost 1.

◮ Specific algorithms exist for almost any distribution and are often quite fast.

◮ So, if R has it, use it.

◮ But R does not handle every distribution that we will need,
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Mixture Representations

◮ It is sometimes the case that a probability distribution can be naturally repre-
sented as a mixture distribution

◮ That is, we can write it in the form

f(x) =

∫

Y
g(x|y)p(y) dy or f(x) =

∑

i∈Y
pi fi(x) ,

⊲ The mixing distribution can be continuous or discrete.

◮ To generate a random variable X using such a representation,

⊲ we can first generate a variable Y from the mixing distribution

⊲ Then generate X from the selected conditional distribution
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Mixture Representations

Generating the Mixture

◮ Continuous

f(x) =

∫

Y
g(x|y)p(y) dy ⇒ y ∼ p(y) and X ∼ f(x|y), then X ∼ f(x)

◮ Discrete

f(x) =
∑

i∈Y
pi fi(x) ⇒ i ∼ pi and X ∼ fi(x), then X ∼ f(x)

◮ Discrete Normal Mixture R code

⊲ p1 ∗ N(µ1, σ1) + p2 ∗ N(µ2, σ2) + p3 ∗ N(µ3, σ3)
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Mixture Representations

Continuous Mixtures

◮ Student’s t density with ν degrees of freedom

X|y ∼ N (0, ν/y) and Y ∼ χ2
ν.

⊲ Generate from a χ2
ν then from the corresponding normal distribution

⊲ Obviously, using rt is slightly more efficient

◮ If X is negative binomial X ∼ N eg(n, p)

⊲ X|y ∼ P(y) and Y ∼ G(n, β),

⊲ R code generates from this mixture
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Accept–Reject Methods

Introduction

◮ There are many distributions where transform methods fail

◮ For these cases, we must turn to indirect methods

⊲ We generate a candidate random variable

⊲ Only accept it subject to passing a test

◮ This class of methods is extremely powerful.

⊲ It will allow us to simulate from virtually any distribution.

◮ Accept–Reject Methods

⊲ Only require the functional form of the density f of interest

⊲ f = target, g=candidate

◮ Where it is simpler to simulate random variables from g
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Accept–Reject Methods

Accept–Reject Algorithm

◮ The only constraints we impose on this candidate density g

⊲ f and g have compatible supports (i.e., g(x) > 0 when f(x) > 0).

⊲ There is a constant M with f(x)/g(x) ≤ M for all x.

◮ X ∼ f can be simulated as follows.

⊲ Generate Y ∼ g and, independently, generate U ∼ U[0,1].

⊲ If U ≤ 1
M

f(Y )
g(Y )

, set X = Y .

⊲ If the inequality is not satisfied, we then discard Y and U and start again.

◮ Note that M = supx
f(x)
g(x)

◮ P ( Accept ) = 1
M

, Expected Waiting Time = M
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Accept–Reject Algorithm

R Implementation

Succinctly, the Accept–Reject Algorithm is

Accept–Reject Method

1. Generate Y ∼ g, U ∼ U[0,1];

2. Accept X = Y if U ≤ f(Y )/Mg(Y );

3. Return to 1 otherwise.

◮ R implementation: If randg generates from g

> u=runif(1)*M

> y=randg(1)

> while (u>f(y)/g(y))

{

u=runif(1)*M

y=randg(1)

}

◮ Produces a single generation y from f
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Accept–Reject Algorithm

Normals from Double Exponentials

◮ Candidate Y ∼ 1
2 exp(−|y|)

◮ Target X ∼ 1√
2π

exp(−x2/2)

1√
2π

exp(−y2/2)

1
2 exp(−|y|) ≤ 2√

2π
exp(1/2)

⊲ Maximum at y = 1

◮ Accept Y if U ≤ exp(−.5Y 2 + |Y | − .5)

◮ Look at R code
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Accept–Reject Algorithm

Theory

◮ Why does this method work?

◮ A straightforward probability calculation shows

P (Y ≤ x| Accept ) = P
(
Y ≤ x|U ≤ f(Y )

Mg(Y )

)
= P (X ≤ x)

⊲ Simulating from g, the output of this algorithm is exactly distributed from f .

�

◮ The Accept–Reject method is applicable in any dimension

◮ As long as g is a density over the same space as f .

◮ Only need to know f/g up to a constant

◮ Only need an upper bound on M
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Accept–Reject Algorithm

Betas from Uniforms

• Generate X ∼ beta(a, b).

• No direct method if a and b are not integers.

• Use a uniform candidate

• For a = 2.7 and b = 6.3
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Accept–Reject Algorithm

Betas from Betas

• Generate X ∼ beta(a, b).

• No direct method if a and b are not integers.

• Use a beta candidate

• For a = 2.7 and b = 6.3, Y ∼ beta(2, 6)
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Accept–Reject Algorithm

Betas from Betas-Details

◮ Beta density ∝ xa(1 − x)b

◮ Can generate if a and b integers

◮ If not, use candidate with a1 and b1 integers

ya(1 − y)b

ya1(1 − y)b1
maximized at y =

a − a1

a − a1 + b − b1

⊲ Need a1 < a and b1 < b

◮ Efficiency ↑ as the candidate gets closer to the target

◮ Look at R code



Monte Carlo Methods with R: Random Variable Generation [58]

Accept–Reject Algorithm

Comments

�Some key properties of the Accept–Reject algorithm::

1. Only the ratio f/M is needed

⊲ So the algorithm does not depend on the normalizing constant.

2. The bound f ≤ Mg need not be tight

⊲ Accept–Reject is valid, but less efficient, if M is replaced with a larger
constant.

3. The probability of acceptance is 1/M

⊲ So M should be as small as possible for a given computational effort.
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Chapter 3: Monte Carlo Integration

“Every time I think I know what’s going on, suddenly there’s another
layer of complications. I just want this damn thing solved.”

John Scalzi

The Last Colony

This Chapter

◮ This chapter introduces the major concepts of Monte Carlo methods

◮ The validity of Monte Carlo approximations relies on the Law of Large Numbers

◮ The versatility of the representation of an integral as an expectation
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Monte Carlo Integration

Introduction

◮ We will be concerned with evaluating integrals of the form∫

X
h(x) f(x) dx,

⊲ f is a density

⊲ We can produce an almost infinite number of random variables from f

◮ We apply probabilistic results

⊲ Law of Large Numbers

⊲ Central Limit Theorem

◮ The Alternative - Deterministic Numerical Integration

⊲ R functions area and integrate

⊲ OK in low (one) dimensions

⊲ Usually needs some knowledge of the function



Monte Carlo Methods with R: Monte Carlo Integration [61]

Classical Monte Carlo Integration

The Monte Carlo Method

◮ The generic problem: Evaluate

Ef [h(X)] =

∫

X
h(x) f(x) dx,

⊲ X takes its values in X

◮ The Monte Carlo Method

⊲ Generate a sample (X1, . . . , Xn) from the density f

⊲ Approximate the integral with

hn =
1

n

n∑

j=1

h(xj) ,
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Classical Monte Carlo Integration

Validating the Monte Carlo Method

◮ The Convergence

hn =
1

n

n∑

j=1

h(xj) →
∫

X
h(x) f(x) dx = Ef [h(X)]

⊲ Is valid by the Strong Law of Large Numbers

◮ When h2(X) has a finite expectation under f ,

hn − Ef [h(X)]√
vn

→ N (0, 1)

⊲ Follows from the Central Limit Theorem

⊲ vn = 1
n2

∑n
j=1 [h(xj) − hn]

2.
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Classical Monte Carlo Integration

A First Example

◮ Look at the function

◮ h(x) = [cos(50x) + sin(20x)]2

◮ Monitoring Convergence

◮ R code
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Classical Monte Carlo Integration

A Caution

◮ The confidence band produced

in this figure is not a 95% con-

fidence band in the classical

sense

◮ They are Confidence Intervals were you to stop at a chosen number of iterations
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Classical Monte Carlo Integration

Comments

�

◮ The evaluation of the Monte Carlo error is a bonus

◮ It assumes that vn is a proper estimate of the variance of hn

◮ If vn does not converge, converges too slowly, a CLT may not apply
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Classical Monte Carlo Integration

Another Example

◮ Normal Probability

Φ̂(t) =
1

n

n∑

i=1

Ixi≤t → Φ(t) =

∫ t

−∞

1√
2π

e−y2/2dy

⊲ The exact variance Φ(t)[1 − Φ(t)]/n

⊲ Conservative: Var ≈ 1/4n

⊲ For a precision of four decimals

⊲ Want 2 ×
√

1/4n ≤ 10−4 simulations

⊲ Take n = (104)2 = 108

◮ This method breaks down for tail probabilities
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Importance Sampling

Introduction

◮ Importance sampling is based on an alternative formulation of the SLLN

Ef [h(X)] =

∫

X
h(x)

f(x)

g(x)
g(x) dx = Eg

[
h(X)f(X)

g(X)

]
;

⊲ f is the target density

⊲ g is the candidate density

⊲ Sound Familiar?
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Importance Sampling

Introduction

◮ Importance sampling is based on an alternative formulation of the SLLN

Ef [h(X)] =

∫

X
h(x)

f(x)

g(x)
g(x) dx = Eg

[
h(X)f(X)

g(X)

]
;

⊲ f is the target density

⊲ g is the candidate density

⊲ Sound Familiar? – Just like Accept–Reject

◮ So
1

n

n∑

j=1

f(Xj)

g(Xj)
h(Xj) → Ef [h(X)]

◮ As long as

⊲ Var (h(X)f(X)/g(X)) < ∞
⊲ supp(g) ⊃ supp(h × f)
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Importance Sampling

Revisiting Normal Tail Probabilities

◮ Z ∼ N (0, 1) and we are interested in the probability P (Z > 4.5)

◮ > pnorm(-4.5,log=T)

[1] -12.59242

◮ Simulating Z(i) ∼ N (0, 1) only produces a hit once in about 3 million iterations!

⊲ Very rare event for the normal

⊲ Not-so-rare for a distribution sitting out there!

◮ Take g = Exp(1) truncated at 4.5:

g(y) =
e−y

∫∞
4.5 e−xdx

= e−(y−4.5) ,

◮ The IS estimator is

1

n

n∑

i=1

f(Y (i))

g(Y (i))
=

1

n

n∑

i=1

e−Y 2
i /2+Yi−4.5

√
2π

R code
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Importance Sampling

Normal Tail Variables

◮ The Importance sampler does not give us a sample ⇒ Can use Accept–Reject

◮ Sample Z ∼ N (0, 1), Z > a ⇒ Use Exponential Candidate
1√
2π

exp(−.5x2)

exp(−(x − a))
=

1√
2π

exp(−.5x2 + x + a) ≤ 1√
2π

exp(−.5a∗2 + a∗ + a)

⊲ Where a∗ = max{a, 1}

◮ Normals > 20

◮ The Twilight Zone

◮ R code
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Importance Sampling

Comments

� Importance sampling has little restriction on the choice of the candidate

◮ g can be chosen from distributions that are easy to simulate

⊲ Or efficient in the approximation of the integral.

◮ Moreover, the same sample (generated from g) can be used repeatedly

⊲ Not only for different functions h but also for different densities f .
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Importance Sampling

Easy Model - Difficult Distribution

Example: Beta posterior importance approximation

◮ Have an observation x from a beta B(α, β) distribution,

x ∼ Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

I[0,1](x)

◮ There exists a family of conjugate priors on (α, β) of the form

π(α, β) ∝
{

Γ(α + β)

Γ(α)Γ(β)

}λ

xα
0y

β
0 ,

where λ, x0, y0 are hyperparameters,

◮ The posterior is then equal to

π(α, β|x) ∝
{

Γ(α + β)

Γ(α)Γ(β)

}λ+1

[xx0]
α[(1 − x)y0]

β .
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Importance Sampling

Easy Model - Difficult Distribution -2

◮ The posterior distribution is intractable

π(α, β|x) ∝
{

Γ(α + β)

Γ(α)Γ(β)

}λ+1

[xx0]
α[(1 − x)y0]

β .

⊲ Difficult to deal with the gamma functions

⊲ Simulating directly from π(α, β|x) is impossible.

◮ What candidate to use?

◮ Contour Plot

◮ Suggest a candidate?

◮ R code
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Importance Sampling

Easy Model - Difficult Distribution – 3

◮ Try a Bivariate Student’s T (or Normal)

◮ Trial and error

⊲ Student’s T (3, µ, Σ) distribution with µ = (50, 45) and

Σ =

(
220 190
190 180

)

⊲ Produce a reasonable fit

⊲ R code

◮ Note that we are using the fact that

X ∼ f(x) ⇒ Σ1/2X + µ ∼ f
(
(x − µ)′Σ−1(x − µ)

)
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Importance Sampling

Easy Model - Difficult Distribution – Posterior Means

◮ The posterior mean of α is
∫ ∫

απ(α, β|x)dαdβ =

∫ ∫ [
α

π(α, β|x)

g(α, β)

]
g(α, β)dαdβ ≈ 1

M

M∑

i=1

αi
π(αi, βi|x)

g(αi, βi)

where

⊲ π(α, β|x) ∝
{

Γ(α+β)
Γ(α)Γ(β)

}λ+1

[xx0]
α[(1 − x)y0]

β

⊲ g(α, β) = T (3, µ, Σ)

◮ Note that π(α, β|x) is not normalized, so we have to calculate
∫ ∫

απ(α, β|x)dαdβ∫ ∫
π(α, β|x)dαdβ

≈
∑M

i=1 αi
π(αi,βi|x)
g(αi,βi)∑M

i=1
π(αi,βi|x)
g(αi,βi)

◮ The same samples can be used for every posterior expectation

◮ R code
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Importance Sampling

Probit Analysis

Example: Probit posterior importance sampling approximation

◮ y are binary variables, and we have covariates x ∈ R
p such that

Pr(y = 1|x) = 1 − Pr(y = 0|x) = Φ(xTβ) , β ∈ R
p .

◮ We return to the dataset Pima.tr, x=BMI

◮ A GLM estimation of the model is (using centered x)

>glm(formula = y ~ x, family = binomial(link = "probit"))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.44957 0.09497 -4.734 2.20e-06 ***

x 0.06479 0.01615 4.011 6.05e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

So BMI has a significant impact on the possible presence of diabetes.
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Importance Sampling

Bayesian Probit Analysis

◮ From a Bayesian perspective, we use a vague prior

⊲ β = (β1, β2) , each having a N (0, 100) distribution

◮ With Φ the normal cdf, the posterior is proportional to
n∏

i=1

[Φ(β1 + (xi − x̄)β2]
yi [Φ(−β1 − (xi − x̄)β2]

1−yi × e−
β2
1+β2

2
2×100

◮ Level curves of posterior

◮ MLE in the center

◮ R code
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Importance Sampling

Probit Analysis Importance Weights

◮ Normal candidate centered at the MLE - no finite variance guarantee

◮ The importance weights are rather uneven, if not degenerate

◮ Right side = reweighted candidate sample (R code)

◮ Somewhat of a failure
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Chapter 5: Monte Carlo Optimization

“He invented a game that allowed players to predict the outcome?”
Susanna Gregory

To Kill or Cure

This Chapter

◮ Two uses of computer-generated random variables to solve optimization problems.

◮ The first use is to produce stochastic search techniques

⊲ To reach the maximum (or minimum) of a function

⊲ Avoid being trapped in local maxima (or minima)

⊲ Are sufficiently attracted by the global maximum (or minimum).

◮ The second use of simulation is to approximate the function to be optimized.
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Monte Carlo Optimization

Introduction

◮ Optimization problems can mostly be seen as one of two kinds:

⊲ Find the extrema of a function h(θ) over a domain Θ

⊲ Find the solution(s) to an implicit equation g(θ) = 0 over a domain Θ.

◮ The problems are exchangeable

⊲ The second one is a minimization problem for a function like h(θ) = g2(θ)

⊲ while the first one is equivalent to solving ∂h(θ)/∂θ = 0

◮ We only focus on the maximization problem
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Monte Carlo Optimization

Deterministic or Stochastic

◮ Similar to integration, optimization can be deterministic or stochastic

◮ Deterministic: performance dependent on properties of the function

⊲ such as convexity, boundedness, and smoothness

◮ Stochastic (simulation)

⊲ Properties of h play a lesser role in simulation-based approaches.

◮ Therefore, if h is complex or Θ is irregular, chose the stochastic approach.
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Monte Carlo Optimization

Numerical Optimization

◮ R has several embedded functions to solve optimization problems

⊲ The simplest one is optimize (one dimensional)

Example: Maximizing a Cauchy likelihood C(θ, 1)

◮ When maximizing the likelihood of a Cauchy C(θ, 1) sample,

ℓ(θ|x1, . . . , xn) =
n∏

i=1

1

1 + (xi − θ)2
,

◮ The sequence of maxima (MLEs) → θ∗ = 0 when n → ∞.

◮ But the journey is not a smooth one...
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Monte Carlo Optimization

Cauchy Likelihood

◮ MLEs (left) at each sample size, n = 1, 500 , and plot of final likelihood (right).

⊲ Why are the MLEs so wiggly?

⊲ The likelihood is not as well-behaved as it seems
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Monte Carlo Optimization

Cauchy Likelihood-2

◮ The likelihood ℓ(θ|x1, . . . , xn) =
∏n

i=1
1

1+(xi−θ)2

◮ Is like a polynomial of degree 2n

◮ The derivative has 2n zeros

◮ Hard to see if n = 500

◮ Here is n = 5

◮ R code
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Monte Carlo Optimization

Newton-Raphson

◮ Similarly, nlm is a generic R function using the Newton–Raphson method

◮ Based on the recurrence relation

θi+1 = θi −
[

∂2h

∂θ∂θT
(θi)

]−1
∂h

∂θ
(θi)

◮ Where the matrix of the second derivatives is called the Hessian

⊲ This method is perfect when h is quadratic

⊲ But may also deteriorate when h is highly nonlinear

⊲ It also obviously depends on the starting point θ0 when h has several minima.
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Monte Carlo Optimization

Newton-Raphson; Mixture Model Likelihood

◮ Bimodal Mixture Model Likelihood 1
4 N (µ1, 1) + 3

4 N (µ2, 1)

◮ Sequences go to the closest mode

◮ Starting point (−1,−1) has a steep gradient

⊲ Bypasses the main mode (−0.68, 1.98)

⊲ Goes to other mode (lower likelihood)
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Stochastic search

A Basic Solution

◮ A natural if rudimentary way of using simulation to find maxθ h(θ)

⊲ Simulate points over Θ according to an arbitrary distribution f positive on Θ

⊲ Until a high value of h(θ) is observed

◮ Recall h(x) = [cos(50x) + sin(20x)]2

◮ Max=3.8325

◮ Histogram of 1000 runs
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Stochastic search

Stochastic Gradient Methods

◮ Generating direct simulations from the target can be difficult.

◮ Different stochastic approach to maximization

⊲ Explore the surface in a local manner.

⊲ Can use θj+1 = θj + ǫj

⊲ A Markov Chain

⊲ The random component ǫj can be arbitrary

◮ Can also use features of the function: Newton-Raphson Variation

θj+1 = θj + αj∇h(θj) , αj > 0 ,

⊲ Where ∇h(θj) is the gradient

⊲ αj the step size
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Stochastic search

Stochastic Gradient Methods-2

◮ In difficult problems

⊲ The gradient sequence will most likely get stuck in a local extremum of h.

◮ Stochastic Variation

∇h(θj) ≈
h(θj + βjζj) − h(θj + βjζj)

2βj
ζj =

∆h(θj, βjζj)

2βj
ζj ,

⊲ (βj) is a second decreasing sequence

⊲ ζj is uniform on the unit sphere ||ζ|| = 1.

◮ We then use
θj+1 = θj +

αj

2βj
∆h(θj, βjζj) ζj



Monte Carlo Methods with R: Monte Carlo Optimization [90]

Stochastic Search

A Difficult Minimization

◮ Many Local Minima

◮ Global Min at (0, 0)

◮ Code in the text
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Stochastic Search

A Difficult Minimization – 2

Scenario 1 2 3 4

αj 1/ log(j + 1) 1/100 log(j + 1) 1/(j + 1) 1/(j + 1)

βj 1/ log(j + 1).1 1/ log(j + 1).1 1/(j + 1).5 1/(j + 1).1

◮ α ↓ 0 slowly,
∑

j αj = ∞

◮ β ↓ 0 more slowly,
∑

j(αj/βj)
2 < ∞

◮ Scenarios 1-2: Not enough energy

◮ Scenarios 3-4: Good
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Simulated Annealing

Introduction

◮ This name is borrowed from Metallurgy:

◮ A metal manufactured by a slow decrease of temperature (annealing)

⊲ Is stronger than a metal manufactured by a fast decrease of temperature.

◮ The fundamental idea of simulated annealing methods

⊲ A change of scale, or temperature

⊲ Allows for faster moves on the surface of the function h to maximize.

⊲ Rescaling partially avoids the trapping attraction of local maxima.

◮ As T decreases toward 0, the values simulated from this distribution become
concentrated in a narrower and narrower neighborhood of the local maxima of h
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Simulated Annealing

Metropolis Algorithm/Simulated Annealing

• Simulation method proposed by Metropolis et al. (1953)

• Starting from θ0, ζ is generated from

ζ ∼ Uniform in a neighborhood of θ0.

• The new value of θ is generated as

θ1 =

{
ζ with probability ρ = exp(∆h/T ) ∧ 1

θ0 with probability 1 − ρ,

◦ ∆h = h(ζ) − h(θ0)

◦ If h(ζ) ≥ h(θ0), ζ is accepted

◦ If h(ζ) < h(θ0), ζ may still be accepted

◦ This allows escape from local maxima
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Simulated Annealing

Metropolis Algorithm - Comments

• Simulated annealing typically modifies the temperature T at each iteration

• It has the form

1. Simulate ζ from an instrumental distribution

with density g(|ζ − θi|);
2. Accept θi+1 = ζ with probability

ρi = exp{∆hi/Ti} ∧ 1;

take θi+1 = θi otherwise.

3. Update Ti to Ti+1.

• All positive moves accepted

• As T ↓ 0

◦ Harder to accept downward moves ◦ No big downward moves

• Not a Markov Chain - difficult to analyze
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Simulated Annealing

Simple Example

◮ Trajectory: Ti = 1
(1+i)2

◮ Log trajectory also works

◮ Can Guarantee Finding Global
Max

◮ R code
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Simulated Annealing

Normal Mixture

◮ Previous normal mixture

◮ Most sequences find max

◮ They visit both modes
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Stochastic Approximation

Introduction

◮ We now consider methods that work with the objective function h

⊲ Rather than being concerned with fast exploration of the domain Θ.

◮ Unfortunately, the use of those methods results in an additional level of error

⊲ Due to this approximation of h.

◮ But, the objective function in many statistical problems can be expressed as

⊲ h(x) = E[H(x, Z)]

⊲ This is the setting of so-called missing-data models
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Stochastic Approximation

Optimizing Monte Carlo Approximations

◮ If h(x) = E[H(x, Z)], a Monte Carlo approximation is

ĥ(x) =
1

m

m∑

i=1

H(x, zi),

⊲ Zi’s are generated from the conditional distribution f(z|x).

◮ This approximation yields a convergent estimator of h(x) for every value of x

⊲ This is a pointwise convergent estimator

⊲ Its use in optimization setups is not recommended

⊲ Changing sample of Zi’s ⇒ unstable sequence of evaluations

⊲ And a rather noisy approximation to arg max h(x)
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Stochastic Approximation

Bayesian Probit

Example: Bayesian analysis of a simple probit model

◮ Y ∈ {0, 1} has a distribution depending on a covariate X :

Pθ(Y = 1|X = x) = 1 − Pθ(Y = 0|X = x) = Φ(θ0 + θ1x) ,

⊲ Illustrate with Pima.tr dataset, Y = diabetes indicator, X=BMI

◮ Typically infer from the marginal posterior

arg max
θ0

∫ ∏

i=1

Φ(θ0 + θ1xn)
yiΦ(−θ0 − θ1xn)1−yi dθ1 = arg max

θ0

h(θ0)

⊲ For a flat prior on θ and a sample (x1, . . . , xn).
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Stochastic Approximation

Bayesian Probit – Importance Sampling

◮ No analytic expression for h

◮ The conditional distribution of θ1 given θ0 is also nonstandard

⊲ Use importance sampling with a t distribution with 5 df

⊲ Take µ = 0.1 and σ = 0.03 (MLEs)

◮ Importance Sampling Approximation

ĥ0(θ0) =
1

M

M∑

m=1

∏

i=1

Φ(θ0 + θm
1 xn)

yiΦ(−θ0 − θm
1 xn)

1−yit5(θ
m
1 ; µ, σ)−1 ,
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Stochastic Approximation

Importance Sampling Evaluation

◮ Plotting this approximation of h with t samples simulated for each value of θ0

⊲ The maximization of the represented ĥ function is not to be trusted as an
approximation to the maximization of h.

◮ But, if we use the same t sample for all values of θ0

⊲ We obtain a much smoother function

◮ We use importance sampling based on a single sample of Zi’s

⊲ Simulated from an importance function g(z) for all values of x

⊲ Estimate h with

ĥm(x) =
1

m

m∑

i=1

f(zi|x)

g(zi)
H(x, zi).
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Stochastic Approximation

Importance Sampling Likelihood Representation

◮ Top: 100 runs, different samples

◮ Middle: 100 runs, same sample

◮ Bottom: averages over 100 runs

◮ The averages over 100 runs are the same - but we will not do 100 runs

◮ R code: Run pimax(25) from mcsm
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Stochastic Approximation

Comments

◮ This approach is not absolutely fool-proof

⊲ The precision of ĥm(x) has no reason to be independent of x

⊲ The number m of simulations has to reflect the most varying case.

◮ As in every importance sampling experiment

⊲ The choice of the candidate g is influential

⊲ In obtaining a good (or a disastrous) approximation of h(x).

◮ Checking for the finite variance of the ratio f(zi|x)H(x, zi)
/
g(zi)

⊲ Is a minimal requirement in the choice of g
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Missing-Data Models and Demarginalization

Introduction

◮ Missing data models are special cases of the representation h(x) = E[H(x, Z)]

◮ These are models where the density of the observations can be expressed as

g(x|θ) =

∫

Z
f(x, z|θ) dz .

◮ This representation occurs in many statistical settings

⊲ Censoring models and mixtures

⊲ Latent variable models (tobit, probit, arch, stochastic volatility, etc.)

⊲ Genetics: Missing SNP calls
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Missing-Data Models and Demarginalization

Mixture Model

Example: Normal mixture model as a missing-data model

◮ Start with a sample (x1, . . . , xn)

◮ Introduce a vector (z1, . . . , zn) ∈ {1, 2}n such that

Pθ(Zi = 1) = 1 − Pθ(Zi = 2) = 1/4 , Xi|Zi = z ∼ N (µz, 1) ,

◮ The (observed) likelihood is then obtained as E[H(x,Z)] for

H(x, z) ∝
∏

i; zi=1

1

4
exp
{
−(xi − µ1)

2/2
} ∏

i; zi=2

3

4
exp
{
−(xi − µ2)

2/2
}

,

◮ We recover the mixture model
1

4
N (µ1, 1) +

3

4
N (µ2, 1)

⊲ As the marginal distribution of Xi.
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Missing-Data Models and Demarginalization

Censored–Data Likelihood

Example: Censored–data likelihood

◮ Censored data may come from experiments

⊲ Where some potential observations are replaced with a lower bound

⊲ Because they take too long to observe.

◮ Suppose that we observe Y1, . . ., Ym, iid, from f(y − θ)

⊲ And the (n − m) remaining (Ym+1, . . . , Yn) are censored at the threshold a.

◮ The corresponding likelihood function is

L(θ|y) = [1 − F (a − θ)]n−m
m∏

i=1

f(yi − θ),

⊲ F is the cdf associated with f
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Missing-Data Models and Demarginalization

Recovering the Observed Data Likelihood

◮ If we had observed the last n − m values

⊲ Say z = (zm+1, . . . , zn), with zi ≥ a (i = m + 1, . . . , n),

⊲ We could have constructed the (complete data) likelihood

Lc(θ|y, z) =

m∏

i=1

f(yi − θ)

n∏

i=m+1

f(zi − θ) .

◮ Note that
L(θ|y) = E[Lc(θ|y,Z)] =

∫

Z
Lc(θ|y, z)k(z|y, θ) dz,

⊲ Where k(z|y, θ) is the density of the missing data

⊲ Conditional on the observed data

⊲ The product of the f(zi − θ)/[1 − F (a − θ)]’s

⊲ f(z − θ) restricted to (a, +∞).
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Missing-Data Models and Demarginalization

Comments

◮ When we have the relationship

g(x|θ) =

∫

Z
f(x, z|θ) dz .

⊲ Z merely serves to simplify calculations

⊲ it does not necessarily have a specific meaning

◮ We have the complete-data likelihood Lc(θ|x, z)) = f(x, z|θ)

⊲ The likelihood we would obtain

⊲ Were we to observe (x, z),the complete data

◮ REMEMBER:

g(x|θ) =

∫

Z
f(x, z|θ) dz .
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The EM Algorithm

Introduction

◮ The EM algorithm is a deterministic optimization technique

⊲ Dempster, Laird and Rubin 1977

◮ Takes advantage of the missing data representation

⊲ Builds a sequence of easier maximization problems

⊲ Whose limit is the answer to the original problem

◮ We assume that we observe X1, . . . , Xn ∼ g(x|θ) that satisfies

g(x|θ) =

∫

Z
f(x, z|θ) dz,

⊲ And we want to compute θ̂ = arg max L(θ|x) = arg max g(x|θ).
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The EM Algorithm

First Details

◮ With the relationship g(x|θ) =
∫
Z f(x, z|θ) dz,

⊲ (X,Z) ∼ f(x, z|θ)

◮ The conditional distribution of the missing data Z

⊲ Given the observed data x is

k(z|θ,x) = f(x, z|θ)
/
g(x|θ) .

◮ Taking the logarithm of this expression leads to the following relationship

log L(θ|x)︸ ︷︷ ︸ = Eθ0[log Lc(θ|x,Z)]︸ ︷︷ ︸−Eθ0[log k(Z|θ,x)]︸ ︷︷ ︸,
Obs. Data Complete Data Missing Data

◮ Where the expectation is with respect to k(z|θ0,x).

◮ In maximizing log L(θ|x), we can ignore the last term
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The EM Algorithm

Iterations

◮ Denoting
Q(θ|θ0,x) = Eθ0[log Lc(θ|x,Z)],

◮ EM algorithm indeed proceeds by maximizing Q(θ|θ0,x) at each iteration

⊲ If θ̂(1) = argmaxQ(θ|θ0,x), θ̂(0) → θ̂(1)

◮ Sequence of estimators {θ̂(j)}, where

θ̂(j) = argmaxQ(θ|θ̂(j−1))

◮ This iterative scheme

⊲ Contains both an expectation step

⊲ And a maximization step

⊲ Giving the algorithm its name.
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The EM Algorithm

The Algorithm

Pick a starting value θ̂(0) and set m = 0.

Repeat

1. Compute (the E-step)

Q(θ|θ̂(m),x) = Eθ̂(m)
[log Lc(θ|x,Z)] ,

where the expectation is with respect to k(z|θ̂(m),x).

2. Maximize Q(θ|θ̂(m),x) in θ and take (the M-step)

θ̂(m+1) = arg max
θ

Q(θ|θ̂(m),x)

and set m = m + 1

until a fixed point is reached; i.e., θ̂(m+1) = θ̂(m).fixed point
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The EM Algorithm

Properties

◮ Jensen’s inequality ⇒ The likelihood increases at each step of the EM algorithm

L(θ̂(j+1)|x) ≥ L(θ̂(j)|x),

⊲ Equality holding if and only if Q(θ̂(j+1)|θ̂(j),x) = Q(θ̂(j)|θ̂(j),x).

◮ Every limit point of an EM sequence {θ̂(j)} is a stationary point of L(θ|x)

⊲ Not necessarily the maximum likelihood estimator

⊲ In practice, we run EM several times with different starting points.

◮ Implementing the EM algorithm thus means being able to

(a) Compute the function Q(θ′|θ,x)

(b) Maximize this function.
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The EM Algorithm

Censored Data Example

◮ The complete-data likelihood is

Lc(θ|y, z) ∝
m∏

i=1

exp{−(yi − θ)2/2}
n∏

i=m+1

exp{−(zi − θ)2/2} ,

◮ With expected complete-data log-likelihood

Q(θ|θ0,y) = −1

2

m∑

i=1

(yi − θ)2 − 1

2

n∑

i=m+1

Eθ0[(Zi − θ)2] ,

⊲ the Zi are distributed from a normal N (θ, 1) distribution truncated at a.

◮ M-step (differentiating Q(θ|θ0,y) in θ and setting it equal to 0 gives

θ̂ =
mȳ + (n − m)Eθ′[Z1]

n
.

⊲ With Eθ[Z1] = θ + ϕ(a−θ)
1−Φ(a−θ),



Monte Carlo Methods with R: Monte Carlo Optimization [115]

The EM Algorithm

Censored Data MLEs

◮ EM sequence

θ̂(j+1) =
m

n
ȳ+

n − m

n

[

θ̂(j) +
ϕ(a − θ̂(j))

1 − Φ(a − θ̂(j))

]

◮ Climbing the Likelihood

◮ R code
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The EM Algorithm

Normal Mixture

◮ Normal Mixture Bimodal Likelihood

Q(θ′|θ,x) = −1

2

n∑

i=1

Eθ

[
Zi(xi − µ1)

2 + (1 − Zi)(xi − µ2)
2
∣∣x
]
.

Solving the M-step then provides the closed-form expressions

µ′
1 = Eθ

[
n∑

i=1

Zixi|x
]/

Eθ

[
n∑

i=1

Zi|x
]

and

µ′
2 = Eθ

[
n∑

i=1

(1 − Zi)xi|x
]/

Eθ

[
n∑

i=1

(1 − Zi)|x
]

.

Since

Eθ [Zi|x] =
ϕ(xi − µ1)

ϕ(xi − µ1) + 3ϕ(xi − µ2)
,
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The EM Algorithm

Normal Mixture MLEs

◮ EM five times with various starting points

◮ Two out of five sequences → higher mode

◮ Others → lower mode
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Monte Carlo EM

Introduction

◮ If computation Q(θ|θ0,x) is difficult, can use Monte Carlo

◮ For Z1, . . . ,ZT ∼ k(z|x, θ̂(m)), maximize

Q̂(θ|θ0,x) =
1

T

T∑

i=1

log Lc(θ|x, zi)

◮ Better: Use importance sampling

⊲ Since

arg max
θ

L(θ|x) = arg max
θ

log
g(x|θ)

g(x|θ(0))
= arg max

θ
log Eθ(0)

[
f(x, z|θ)

f(x, z|θ(0))

∣∣∣∣x
]

,

⊲ Use the approximation to the log-likelihood

log L(θ|x) ≈ 1

T

T∑

i=1

Lc(θ|x, zi)

Lc(θ(0)|x, zi)
,
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Monte Carlo EM

Genetics Data

Example: Genetic linkage.

◮ A classic example of the EM algorithm

◮ Observations (x1, x2, x3, x4) are gathered from the multinomial distribution

M
(

n;
1

2
+

θ

4
,
1

4
(1 − θ),

1

4
(1 − θ),

θ

4

)
.

◮ Estimation is easier if the x1 cell is split into two cells

⊲ We create the augmented model

(z1, z2, x2, x3, x4) ∼ M
(

n;
1

2
,
θ

4
,
1

4
(1 − θ),

1

4
(1 − θ),

θ

4

)

with x1 = z1 + z2.

⊲ Complete-data likelihood: θz2+x4(1 − θ)x2+x3

⊲ Observed-data likelihood: (2 + θ)x1θx4(1 − θ)x2+x3
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Monte Carlo EM

Genetics Linkage Calculations

◮ The expected complete log-likelihood function is

Eθ0[(Z2 + x4) log θ + (x2 + x3) log(1 − θ)] =

(
θ0

2 + θ0
x1 + x4

)
log θ + (x2 + x3) log(1 − θ),

⊲ which can easily be maximized in θ, leading to the EM step

θ̂1 =

{
θ0 x1

2 + θ0

}/{
θ0 x1

2 + θ0
+ x2 + x3 + x4

}
.

◮ Monte Carlo EM: Replace the expectation with

⊲ zm = 1
m

∑m
i=1 zi, zi ∼ B(x1, θ0/(2 + θ0))

◮ The MCEM step would then be

̂̂
θ1 =

zm

zm + x2 + x3 + x4
,

which converges to θ̂1 as m grows to infinity.
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Monte Carlo EM

Genetics Linkage MLEs

◮ Note variation in MCEM sequence

◮ Can control with ↑ simulations

◮ R code
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Monte Carlo EM

Random effect logit model

Example: Random effect logit model

◮ Random effect logit model,

⊲ yij is distributed conditionally on one covariate xij as a logit model

P (yij = 1|xij, ui, β) =
exp {βxij + ui}

1 + exp {βxij + ui}
,

⊲ ui ∼ N (0, σ2) is an unobserved random effect.

⊲ (U1, . . . , Un) therefore corresponds to the missing data Z
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Monte Carlo EM

Random effect logit model likelihood

◮ For the complete data likelihood with θ = (β, σ),

Q(θ′|θ,x,y) =
∑

i,j

yijE[β′xij + Ui|β, σ,x,y]

−
∑

i,j

E[log 1 + exp{β′xij + Ui}|β, σ,x,y]

−
∑

i

E[U2
i |β, σ,x,y]/2σ′2 − n log σ′ ,

⊲ it is impossible to compute the expectations in Ui.

◮ Were those available, the M-step would be difficult but feasible

◮ MCEM: Simulate the Ui’s conditional on β, σ,x,y from

π(ui|β, σ,x,y) ∝
exp
{∑

j yijui − u2
i/2σ2

}

∏
j [1 + exp {βxij + ui}]
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Monte Carlo EM

Random effect logit MLEs

◮ Top: Sequence of β’s from the MCEM

algorithm

◮ Bottom: Sequence of completed likeli-

hoods

◮ MCEM sequence

⊲ Increases the number of Monte Carlo steps

at each iteration

◮ MCEM algorithm

⊲ Does not have EM monotonicity property
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Chapter 6: Metropolis–Hastings Algorithms

“How absurdly simple!”, I cried.
“Quite so!”, said he, a little nettled. “Every problem becomes very child-
ish when once it is explained to you.”

Arthur Conan Doyle

The Adventure of the Dancing Men

This Chapter

◮ The first of a of two on simulation methods based on Markov chains

◮ The Metropolis–Hastings algorithm is one of the most general MCMC algorithms

⊲ And one of the simplest.

◮ There is a quick refresher on Markov chains, just the basics.

◮ We focus on the most common versions of the Metropolis–Hastings algorithm.

◮ We also look at calibration of the algorithm via its acceptance rate
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Metropolis–Hastings Algorithms

Introduction

◮ We now make a fundamental shift in the choice of our simulation strategy.

⊲ Up to now we have typically generated iid variables

⊲ The Metropolis–Hastings algorithm generates correlated variables

⊲ From a Markov chain

◮ The use of Markov chains broadens our scope of applications

⊲ The requirements on the target f are quite minimal

⊲ Efficient decompositions of high-dimensional problems

⊲ Into a sequence of smaller problems.

◮ This has been part of a Paradigm Shift in Statistics
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Metropolis–Hastings Algorithms

A Peek at Markov Chain Theory

◮ A minimalist refresher on Markov chains

◮ Basically to define terms

◮ See Robert and Casella (2004, Chapter 6) for more of the story

◮ A Markov chain {X (t)} is a sequence of dependent random variables

X (0), X (1), X (2), . . . , X (t), . . .

where the probability distribution of X (t) depends only on X (t−1).

◮ The conditional distribution of X (t)|X (t−1) is a transition kernel K,

X (t+1) | X (0), X (1), X (2), . . . , X (t) ∼ K(X (t), X (t+1)) .
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Markov Chains

Basics

◮ For example, a simple random walk Markov chain satisfies

X (t+1) = X (t) + ǫt , ǫt ∼ N (0, 1) ,

⊲ The Markov kernel K(X (t), X (t+1)) corresponds to a N (X (t), 1) density.

◮ Markov chain Monte Carlo (MCMC) Markov chains typically have a very strong
stability property.

◮ They have a a stationary probability distribution

⊲ A probability distribution f such that if X (t) ∼ f , then X (t+1) ∼ f , so we
have the equation ∫

X
K(x, y)f(x)dx = f(y).
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Markov Chains

Properties

◮ MCMC Markov chains are also irreducible, or else they are useless

⊲ The kernel K allows for free moves all over the state-space

⊲ For any X (0), the sequence {X (t)} has a positive probability of eventually
reaching any region of the state-space

◮ MCMC Markov chains are also recurrent, or else they are useless

⊲ They will return to any arbitrary nonnegligible set an infinite number of times



Monte Carlo Methods with R: Metropolis–Hastings Algorithms [130]

Markov Chains

AR(1) Process

◮ AR(1) models provide a simple illustration of continuous Markov chains

◮ Here
Xn = θXn−1 + εn , θ ∈ ℜ,

with εn ∼ N(0, σ2)

◮ If the εn’s are independent

⊲ Xn is independent from Xn−2, Xn−3, . . . conditionally on Xn−1.

◮ The stationary distribution φ(x|µ, τ 2) is

N
(

0,
σ2

1 − θ2

)
,

⊲ which requires |θ| < 1.
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Markov Chains

Statistical Language

• We associate the probabilistic language of Markov chains

⊲ With the statistical language of data analysis.

Statistics Markov Chain
marginal distribution ⇔ invariant distribution
proper marginals ⇔ positive recurrent

• If the marginals are not proper, or if they do not exist

⊲ Then the chain is not positive recurrent.

⊲ It is either null recurrent or transient, and both are bad.
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Markov Chains

Pictures of the AR(1) Process

◮ AR(1) Recurrent and Transient -Note the Scale
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◮ R code
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Markov Chains

Ergodicity

◮ In recurrent chains, the stationary distribution is also a limiting distribution

◮ If f is the limiting distribution

X (t) → X ∼ f, for any initial value X (0)

⊲ This property is also called ergodicity

◮ For integrable functions h, the standard average

1

T

T∑

t=1

h(X (t)) −→ Ef [h(X)] ,

⊲ The Law of Large Numbers

⊲ Sometimes called the Ergodic Theorem
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Markov Chains

In Bayesian Analysis

◮ There is one case where convergence never occurs

◮ When, in a Bayesian analysis, the posterior distribution is not proper

◮ The use of improper priors f(x) is quite common in complex models,

⊲ Sometimes the posterior is proper, and MCMC works (recurrent)

⊲ Sometimes the posterior is improper, and MCMC fails (transient)

◮ These transient Markov chains may present all the outer signs of stability

⊲ More later
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Basic Metropolis–Hastings algorithms

Introduction

◮ The working principle of Markov chain Monte Carlo methods is straightforward

◮ Given a target density f

⊲ We build a Markov kernel K with stationary distribution f

⊲ Then generate a Markov chain (X (t)) → X ∼ f

⊲ Integrals can be approximated by to the Ergodic Theorem

◮ The Metropolis–Hastings algorithm is an example of those methods.

⊲ Given the target density f , we simulate from a candidate q(y|x)

⊲ Only need that the ratio f(y)/q(y|x) is known up to a constant
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Basic Metropolis–Hastings algorithms

A First Metropolis–Hastings Algorithm

Metropolis–Hastings Given x(t),

1. Generate Yt ∼ q(y|x(t)).

2. Take

X (t+1) =

{
Yt with probability ρ(x(t), Yt),

x(t) with probability 1 − ρ(x(t), Yt),

where

ρ(x, y) = min

{
f(y)

f(x)

q(x|y)

q(y|x)
, 1

}
.

◮ q is called the instrumental or proposal or candidate distribution

◮ ρ(x, y) is the Metropolis–Hastings acceptance probability

◮ Looks like Simulated Annealing - but constant temperature

⊲ Metropolis–Hastings explores rather than maximizes
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Basic Metropolis–Hastings algorithms

Generating Beta Random Variables

◮ Target density f is the Be(2.7, 6.3)

◮ Candidate q is uniform

◮ Notice the repeats

◮ Repeats must be kept!
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Basic Metropolis–Hastings algorithms

Comparing Beta densities

◮ Comparison with independent
sampling

◮ Histograms indistinguishable

⊲ Moments match

⊲ K-S test accepts

◮ R code
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Basic Metropolis–Hastings algorithms

A Caution

◮ The MCMC and exact sampling outcomes look identical, but

⊲ Markov chain Monte Carlo sample has correlation, the iid sample does not

⊲ This means that the quality of the sample is necessarily degraded

⊲ We need more simulations to achieve the same precision

◮ This is formalized by the effective sample size for Markov chains - later
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Basic Metropolis–Hastings algorithms

Some Comments

◮ In the symmetric case q(x|y) = q(y|x),

ρ(xt, yt) = min

{
f(yt)

f(xt)
, 1

}
.

⊲ The acceptance probability is independent of q

◮ Metropolis–Hastings always accept values of yt such that

f(yt)/q(yt|x(t)) > f(x(t))/q(x(t)|yt)

◮ Values yt that decrease the ratio may also be accepted

◮ Metropolis–Hastings only depends on the ratios

f(yt)/f(x(t)) and q(x(t)|yt)/q(yt|x(t)) .

⊲ Independent of normalizing constants
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Basic Metropolis–Hastings algorithms

The Independent Metropolis–Hastings algorithm

◮ The Metropolis–Hastings algorithm allows q(y|x)

⊲ We can use q(y|x) = g(y), a special case

Independent Metropolis–Hastings

Given x(t)

1. Generate Yt ∼ g(y).

2. Take

X (t+1) =





Yt with probability min

{
f(Yt) g(x(t))

f(x(t)) g(Yt)
, 1

}

x(t) otherwise.
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Basic Metropolis–Hastings algorithms

Properties of the Independent Metropolis–Hastings algorithm

◮ Straightforward generalization of the Accept–Reject method

◮ Candidates are independent, but still a Markov chain

⊲ The Accept–Reject sample is iid, but the Metropolis–Hastings sample is not

⊲ The Accept–Reject acceptance step requires calculating M

⊲ Metropolis–Hastings is Accept–Reject “for the lazy person”
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Basic Metropolis–Hastings algorithms

Application of the Independent Metropolis–Hastings algorithm

◮ We now look at a somewhat more realistic statistical example

⊲ Get preliminary parameter estimates from a model

⊲ Use an independent proposal with those parameter estimates.

◮ For example, to simulate from a posterior distribution π(θ|x) ∝ π(θ)f(x|θ)

⊲ Take a normal or a t distribution centered at the MLE θ̂

⊲ Covariance matrix equal to the inverse of Fisher’s information matrix.
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Independent Metropolis–Hastings algorithm

Braking Data

◮ The cars dataset relates braking distance (y) to speed (x) in a sample of cars.

◮ Model

yij = a + bxi + cx2
i + εij

◮ The likelihood function is
(

1

σ2

)N/2

exp





−1

2σ2

∑

ij

(yij − a − bxi − cx2
i )

2




 ,

where N =
∑

i ni
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Independent Metropolis–Hastings algorithm

Braking Data Least Squares Fit

◮ Candidate from Least Squares

R command: x2=x^2; summary(lm(y~x+x2))

Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.63328 14.80693 0.178 0.860

x 0.88770 2.03282 0.437 0.664

x2 0.10068 0.06592 1.527 0.133

Residual standard error: 15.17 on 47 degrees of freedom
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Independent Metropolis–Hastings algorithm

Braking Data Metropolis Algorithm

◮ Candidate: normal centered at the
MLEs,

a ∼ N (2.63, (14.8)2),

b ∼ N (.887, (2.03)2),

c ∼ N (.100, (0.065)2),

◮ Inverted gamma

σ−2 ∼ G(n/2, (n − 3)(15.17)2)

◮ See the variability of the curves associated with the simulation.
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Independent Metropolis–Hastings algorithm

Braking Data Coefficients

◮ Distributions of estimates

◮ Credible intervals

◮ See the skewness

◮ Note that these are marginal distributions
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Independent Metropolis–Hastings algorithm

Braking Data Assessment

◮ 50, 000 iterations

◮ See the repeats

◮ Intercept may not have converged

◮ R code
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Random Walk Metropolis–Hastings

Introduction

◮ Implementation of independent Metropolis–Hastings can sometimes be difficult

⊲ Construction of the proposal may be complicated

⊲ They ignore local information

◮ An alternative is to gather information stepwise

⊲ Exploring the neighborhood of the current value of the chain

◮ Can take into account the value previously simulated to generate the next value

⊲ Gives a more local exploration of the neighborhood of the current value
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Random Walk Metropolis–Hastings

Some Details

◮ The implementation of this idea is to simulate Yt according to

Yt = X (t) + εt,

⊲ εt is a random perturbation

⊲ with distribution g, independent of X (t)

⊲ Uniform, normal, etc...

◮ The proposal density q(y|x) is now of the form g(y − x)

⊲ Typically, g is symmetric around zero, satisfying g(−t) = g(t)

⊲ The Markov chain associated with q is a random walk
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Random Walk Metropolis–Hastings

The Algorithm

Given x(t),

1. Generate Yt ∼ g(y − x(t)).

2. Take

X (t+1) =





Yt with probability min

{
1,

f(Yt)

f(x(t))

}
,

x(t) otherwise.

◮ The g chain is a random walk

⊲ Due to the Metropolis–Hastings acceptance step, the {X (t)} chain is not

◮ The acceptance probability does not depend on g

⊲ But different gs result in different ranges and different acceptance rates

◮ Calibrating the scale of the random walk is for good exploration
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Random Walk Metropolis–Hastings

Normal Mixtures

◮ Explore likelihood with random walk

◮ Similar to Simulated Annealing

⊲ But constant temperature (scale)

◮ Multimodal ⇒ Scale is important

⊲ Too small ⇒ get stuck

⊲ Too big ⇒ miss modes
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Random Walk Metropolis–Hastings

Normal Mixtures - Different Scales

◮ Left → Right: Scale=1, Scale=2, Scale=3

⊲ Scale=1: Too small, gets stuck

⊲ Scale=2: Just right, finds both modes

⊲ Scale=3: Too big, misses mode

◮ R code
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Random Walk Metropolis–Hastings

Model Selection or Model Choice

◮ Random walk Metropolis–Hastings algorithms also apply to discrete targets.

◮ As an illustration, we consider a regression

⊲ The swiss dataset in R

⊲ y= logarithm of the fertility in 47 districts of Switzerland ≈ 1888

⊲ The covariate matrix X involves five explanatory variables
> names(swiss)

[1] "Fertility" "Agriculture" "Examination" "Education"

[5] "Catholic" "Infant.Mortality"

◮ Compare the 25 = 32 models corresponding to all possible subsets of covariates.

⊲ If we include squares and twoway interactions

⊲ 220 = 1048576 models, same R code



Monte Carlo Methods with R: Metropolis–Hastings Algorithms [155]

Random Walk Metropolis–Hastings

Model Selection using Marginals

◮ Given an ordinary linear regression with n observations,

y|β, σ2, X ∼ Nn(Xβ, σ2In) , X is an (n, p) matrix

◮ The likelihood is

ℓ
(
β, σ2|y, X

)
=
(
2πσ2

)−n/2
exp

[
− 1

2σ2
(y − Xβ)T(y − Xβ)

]

◮ Using Zellner’s g-prior, with the constant g = n

β|σ2, X ∼ Nk+1(β̃, nσ2(XTX)−1) and π(σ2|X) ∝ σ−2

⊲ The marginal distribution of y is a multivariate t distribution,

m(y|X) ∝
[
y′
(

I − n

n + 1
X(X ′X)−1X ′

)
y − 1

n + 1
β̃′X ′Xβ̃

]−n/2

.

◮ Find the model with maximum marginal probability
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Random Walk Metropolis–Hastings

Random Walk on Model Space

◮ To go from γ(t) → γ(t+1)

⊲ First get a candidate γ∗

γ(t) =





1

0

1

1

0




→ γ∗ =





1

0

0

1

0





⊲ Choose a component of γ(t) at random, and flip 1 → 0 or 0 → 1

⊲ Accept the proposed model γ⋆ with probability

min

{
m(y|X, γ⋆)

m(y|X, γ(t))
, 1

}

◮ The candidate is symmetric

◮ Note: This is not the Metropolis–Hastings algorithm in the book - it is simpler
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Random Walk Metropolis–Hastings

Results from the Random Walk on Model Space

◮ Last iterations of the MH search

◮ The chain goes down often

◮ Top Five Models

Marg. γ

7.95 1 0 1 1 1

7.19 0 0 1 1 1

6.27 1 1 1 1 1

5.44 1 0 1 1 0

5.45 1 0 1 1 0

◮ Best model excludes
the variable Examination

⊲ γ = (1, 0, 1, 1, 1)

◮ Inclusion rates:
Agri Exam Educ Cath Inf.Mort

0.661 0.194 1.000 0.904 0.949
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Metropolis–Hastings Algorithms

Acceptance Rates

◮ Infinite number of choices for the candidate q in a Metropolis–Hastings algorithm

◮ Is there and “optimal” choice?

⊲ The choice of q = f , the target distribution? Not practical.

◮ A criterion for comparison is the acceptance rate

⊲ It can be easily computed with the empirical frequency of acceptance

◮ In contrast to the Accept–Reject algorithm

⊲ Maximizing the acceptance rate will is not necessarily best

⊲ Especially for random walks

◮ Also look at autocovariance
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Acceptance Rates

Normals from Double Exponentials

◮ In the Accept–Reject algorithm

⊲ To generate a N (0, 1) from a double-exponential L(α)

⊲ The choice α = 1 optimizes the acceptance rate

◮ In an independent Metropolis–Hastings algorithm

⊲ We can use the double-exponential as an independent candidate q

◮ Compare the behavior of Metropolis–Hastings algorithm

⊲ When using the L(1) candidate or the L(3) candidate
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Acceptance Rates

Normals from Double Exponentials Comparison

◮ L(1) (black)

⊲ Acceptance Rate = 0.83

◮ L(3) (blue)

⊲ Acceptance Rate = 0.47

◮ L(3) has terrible acf (right)

◮ L(3) has not converged
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Acceptance Rates

Normals from Double Exponentials Histograms

◮ L(1) has converged (gray)

◮ L(3) not yet there (blue)

◮ R code
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Acceptance Rates

Random Walk Metropolis–Hastings

◮ Independent Metropolis–Hastings algorithms

⊲ Can be optimized or compared through their acceptance rate

⊲ This reduces the number of replicas in the chain

⊲ And reduces the correlation level in the chain

◮ Not true for other types of Metropolis–Hastings algorithms

⊲ In a random walk, higher acceptance is not always better.

◮ The historical example of Hastings generates a N (0, 1) from

⊲ Yt = Xt−1 + εt

⊲ ρ(x(t), yt) = min{exp{(x(t)2 − y2
t )/2}, 1}, εt ∼ U [−δ, δ]

⊲ δ controls the acceptance rate
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Acceptance Rates

Random Walk Metropolis–Hastings Example

◮ δ = 0.1, 1, and 10

◮ δ = 0.1

⊲ ↑ autocovariance, ↓ convergence

◮ δ = 10

⊲ ↓ autocovariance, ? convergence
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Acceptance Rates

Random Walk Metropolis–Hastings – All of the Details

◮ Acceptance Rates

⊲ δ = 0.1 : 0.9832

⊲ δ = 1 : 0.7952

⊲ δ = 10 : 0.1512

◮ Medium rate does better

⊲ lowest better than the highest
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Random Walk Acceptance Rates

Comments

◮ Random walk Metropolis–Hastings needs careful calibration of acceptance rates

◮ High acceptance rate

⊲ May not have satisfactory behavior

⊲ The chain may be moving too slowly
on the surface of f

◮ This is not always the case.

⊲ f nearly flat ⇒ high acceptance OK

◮ But, unless f is completely flat, parts of the domain may be missed
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Random Walk Acceptance Rates

More Comments

◮ In contrast, if the average acceptance rate is low

⊲ Successive values of f(yt) are often are small compared to f(x(t))

◮ Low acceptance ⇒
⊲ The chain may not see all of f

⊲ May miss an important but
isolated mode of f

◮ Nonetheless, low acceptance is less
of an issue

◮ Golden acceptance rate:

⊲ 1/2 for the models of dimension 1 or 2

⊲ 1/4 in higher dimensions
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Chapter 7: Gibbs Samplers

“Come, Watson , come!” he cried. “The game is afoot.”
Arthur Conan Doyle

The Adventure of the Abbey Grange

This Chapter

◮ We cover both the two-stage and the multistage Gibbs samplers

◮ The two-stage sampler has superior convergence properties

◮ The multistage Gibbs sampler is the workhorse of the MCMC world

◮ We deal with missing data and models with latent variables

◮ And, of course, hierarchical models
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Gibbs Samplers

Introduction

◮ Gibbs samplers gather most of their calibration from the target density

◮ They break complex problems (high dimensional) into a series of easier problems

⊲ May be impossible to build random walk Metropolis–Hastings algorithm

◮ The sequence of simple problems may take a long time to converge

◮ But Gibbs sampling is an interesting and useful algorithm.

◮ Gibbs sampling is from the landmark paper by Geman and Geman (1984)

⊲ The Gibbs sampler is a special case of Metropolis–Hastings

◮ Gelfand and Smith (1990) sparked new interest

⊲ In Bayesian methods and statistical computing

⊲ They solved problems that were previously unsolvable
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The Two-Stage Gibbs Sampler

Introduction

◮ Creates a Markov chain from a joint distribution

◮ If two random variables X and Y have joint density f(x, y)

◮ With corresponding conditional densities fY |X and fX|Y

◮ Generates a Markov chain (Xt, Yt) according to the following steps

Two-stage Gibbs sampler

Take X0 = x0

For t = 1, 2, . . . , generate

1. Yt ∼ fY |X(·|xt−1);

2. Xt ∼ fX|Y (·|yt) .
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The Two-Stage Gibbs Sampler

Convergence

◮ The algorithm straightforward if simulating from both conditionals is feasible

◮ The stationary distribution is f(x, y)

◮ Convergence of the Markov chain insured

⊲ Unless the supports of the conditionals are not connected

Example: Normal bivariate Gibbs

◮ Start with simple illustration, the bivariate normal model:

(X,Y ) ∼ N2

(
0,

(
1 ρ
ρ 1

))
,

◮ The the Gibbs sampler is Given xt, generate

Yt+1 | xt ∼ N (ρxt, 1 − ρ2),

Xt+1 | yt+1 ∼ N (ρyt+1, 1 − ρ2).
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The Two-Stage Gibbs Sampler

Bivariate Normal Path

◮ Iterations (Xt, Yt) → (Xt+1, Yt+1)

◮ Parallel to the axes

◮ Correlation affects mixing

◮ R code
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The Two-Stage Gibbs Sampler

Bivariate Normal Convergence

◮ The subchain (Xt)t satisfies Xt+1|Xt = xt ∼ N (ρ2xt, 1 − ρ4),

◮ A recursion shows that

Xt|X0 = x0 ∼ N (ρ2tx0, 1 − ρ4t) → N (0, 1) ,

◮ We have converged to the joint distribution and both marginal distributions.

◮ Histogram of Marginal

◮ 2000 Iterations
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The Two-Stage Gibbs Sampler

A First Hierarchical Model

◮ Gibbs sampling became popular

⊲ Since it was the perfect computational complement to hierarchical models

◮ A hierarchical model specifies a joint distribution

⊲ As successive layers of conditional distributions

Example: Generating beta-binomial random variables

◮ Consider the hierarchy

X|θ ∼ Bin(n, θ)

θ ∼ Be(a, b),

◮ Which leads to the joint distribution

f(x, θ) =

(
n

x

)
Γ(a + b)

Γ(a)Γ(b)
θx+a−1(1 − θ)n−x+b−1.
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The Two-Stage Gibbs Sampler

Beta-Binomial Conditionals

◮ The joint distribution

f(x, θ) =

(
n

x

)
Γ(a + b)

Γ(a)Γ(b)
θx+a−1(1 − θ)n−x+b−1.

◮ Has full conditionals

⊲ X|θ ∼ Bin(n, θ)

⊲ θ|X ∼ Be(X + a, n − X + b)

◮ This can be seen from

f(x, θ) =

(
n

x

)
Γ(a + b)

Γ(a)Γ(b)
θx+a−1(1 − θ)n−x+b−1.
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The Two-Stage Gibbs Sampler

Beta-Binomial Marginals

◮ The marginal distribution of X is the Beta-Binomial

m(x) =

∫ 1

0

(
n

x

)
Γ(a + b)

Γ(a)Γ(b)
θx+a−1(1 − θ)n−x+b−1dθ

◮ Output from the Gibbs sampler

◮ X and θ marginals
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The Two-Stage Gibbs Sampler

A First Normal Hierarchy

◮ A study on metabolism in 15-year-old females yielded the following data

> x=c(91,504,557,609,693,727,764,803,857,929,970,1043,

+ 1089,1195,1384,1713)

⊲ Their energy intake, measured in megajoules, over a 24 hour period.

◮ We model
log(X) ∼ N (θ, σ2), i = 1, . . . , n

⊲ And complete the hierarchy with

θ ∼ N (θ0, τ
2),

σ2 ∼ IG(a, b),

where IG(a, b) is the inverted gamma distribution.
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The Two-Stage Gibbs Sampler

θ Conditional

◮ The posterior distribution ∝ joint distribution is

f(θ, σ2|x) ∝
[

1

(σ2)n/2
e−

∑
i(xi−θ)2/(2σ2)

]
×
[

1

τ
e−(θ−θ0)2/(2τ2)

]
×
[

1

(σ2)a+1
e1/bσ2

]

(Here x = log(x))

⊲ And now we can get the full conditionals

◮ θ conditional

f(θ, σ2|x) ∝
[

1

(σ2)n/2
e−

∑
i(xi−θ)2/(2σ2)

]
×
[

1

τ
e−(θ−θ0)

2/(2τ2)

]
×
[

1

(σ2)a+1
e1/bσ2

]

⇒

θ|x, σ2 ∼ N
(

σ2

σ2 + nτ 2
θ0 +

nτ 2

σ2 + nτ 2
x̄,

σ2τ 2

σ2 + nτ 2

)
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The Two-Stage Gibbs Sampler

σ2 Conditional

◮ Again from the joint distribution

f(θ, σ2|x) ∝
[

1

(σ2)n/2
e−

∑
i(xi−θ)2/(2σ2)

]
×
[

1

τ
e−(θ−θ0)2/(2τ2)

]
×
[

1

(σ2)a+1
e1/bσ2

]

⇒

σ2|x, θ ∼ IG
(

n

2
+ a,

1

2

∑

i

(xi − θ)2 + b

)
,

◮ We now have a Gibbs sampler using

θ|σ2 ∼ rnorm and (1/σ2)|θ ∼ rgamma

◮ R code
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The Multistage Gibbs Sampler

Introduction

◮ There is a natural extension from the two-stage to the multistage Gibbs sampler

◮ For p > 1, write X = X = (X1, . . . , Xp)

⊲ suppose that we can simulate from the full conditional densities

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp ∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

◮ The multistage Gibbs sampler has the following transition from X (t) to X (t+1):

The Multi-stage Gibbs Sampler

At iteration t = 1, 2, . . . ,, given x(t) = (x
(t)
1 , . . . , x

(t)
p ), generate

1. X
(t+1)
1 ∼ f1(x1|x(t)

2 , . . . , x
(t)
p );

2. X
(t+1)
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p );

...

p. X
(t+1)
p ∼ fp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 ).
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The Multistage Gibbs Sampler

A Multivariate Normal Example

Example: Normal multivariate Gibbs

◮ We previously saw a simple bivariate normal example

◮ Consider the multivariate normal density

(X1, X2, . . . , Xp) ∼ Np (0, (1 − ρ)I + ρJ) ,

⊲ I is the p × p identity matrix

⊲ J is a p × p matrix of ones

⊲ corr(Xi, Xj) = ρ for every i and j

◮ The full conditionals are

Xi|x(−i) ∼ N
(

(p − 1)ρ

1 + (p − 2)ρ
x̄(−i),

1 + (p − 2)ρ − (p − 1)ρ2

1 + (p − 2)ρ

)
,
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The Multistage Gibbs Sampler

Use of the Multivariate Normal Gibbs sampler

◮ The Gibbs sampler that generates from these univariate normals

⊲ Can then be easily derived

⊲ But it is not needed for this problem

◮ It is, however, a short step to consider

⊲ The setup where the components are restricted to a subset of R
p.

⊲ If this subset is a hypercube,

H =
∏

i=1

(ai, bi) , i = 1, . . . , p

the corresponding conditionals are the normals above restricted to (ai, bi)

◮ These are easily simulated
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The Multistage Gibbs Sampler

A Hierarchical Model for the Energy Data

◮ The oneway model can be a hierarchical model.

◮ Let Xij be the energy intake, i = 1, 2 (girl or boy), j = 1, n.

log(Xij) = θi + εij, , N(0, σ2)

◮ We can complete this model with a hierarchical specification.

◮ There are different ways to parameterize this model. Here is one:

log(Xij) ∼ N (θi, σ
2), i = 1, . . . , k, j = 1, . . . , ni,

θi ∼ N (µ, τ 2), i = 1, . . . , k,

µ ∼ N (µ0, σ
2
µ),

σ2 ∼ IG(a1, b1), τ 2 ∼ IG(a2, b2), σ2
µ ∼ IG(a3, b3).
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The Multistage Gibbs Sampler

Full Conditionals for a Oneway Model

◮ Now, if we proceed as before we can derive the set of full conditionals

θi ∼ N
(

σ2

σ2 + niτ 2
µ +

niτ
2

σ2 + niτ 2
X̄i,

σ2τ 2

σ2 + niτ 2

)
, i = 1, . . . , k,

µ ∼ N
(

τ 2

τ 2 + kσ2
µ

µ0 +
kσ2

µ

τ 2 + kσ2
µ

θ̄,
σ2

µτ
2

τ 2 + kσ2
µ

)

,

σ2 ∼ IG



n/2 + a1, (1/2)
∑

ij

(Xij − θi)
2 + b1



 ,

τ 2 ∼ IG
(

k/2 + a2, (1/2)
∑

i

(θi − µ)2 + b2

)
,

σ2
µ ∼ IG

(
1/2 + a3, (1/2)(µ − µ0)

2 + b3

)
,

where n =
∑

i ni and θ̄ =
∑

i niθi/n.
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The Multistage Gibbs Sampler

Output From the Energy Data Analysis

◮ The top row:

⊲ Mean µ and θ1 and θ2,

⊲ For the girl’s and boy’s
energy

◮ Bottom row:

⊲ Standard deviations.

◮ A variation is to give µ a flat prior, which is equivalent to setting σ2
µ = ∞

◮ R code
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Missing Data and Latent Variables

Introduction

◮ Missing Data Models start with the relation

g(x|θ) =

∫

Z
f(x, z|θ) dz

⊲ g(x|θ) is typically the sample density or likelihood

⊲ f is arbitrary and can be chosen for convenience

◮ We implement a Gibbs sampler on f

◮ Set y = (x, z) = (y1, . . . , yp) and run the Gibbs sampler

Y1|y2, . . . , yp ∼ f(y1|y2, . . . , yp),

Y2|y1, y3, . . . , yp ∼ f(y2|y1, y3, . . . , yp),
...

Yp|y1, . . . , yp−1 ∼ f(yp|y1, . . . , yp−1).
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Missing Data and Latent Variables

Completion Gibbs Sampler

◮ For g(x|θ) =
∫
Z f(x, z|θ) dz

◮ And y = (x, z) = (y1, . . . , yp) with

Y1|y2, . . . , yp ∼ f(y1|y2, . . . , yp),

Y2|y1, y3, . . . , yp ∼ f(y2|y1, y3, . . . , yp),
...

Yp|y1, . . . , yp−1 ∼ f(yp|y1, . . . , yp−1).

⊲ Y (t) = (X (t), Z(t)) → Y ∼ f(x, z)

⊲ X (t) → Y ∼ f(x)

⊲ Z(t) → Y ∼ f(z)

◮ X (t) and Z(t) are not Markov chains

⊲ But the subchains converge to the correct distributions
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Missing Data and Latent Variables

Censored Data Models

Example: Censored Data Gibbs

◮ Recall the censored data likelihood function

g(x|θ) = L(θ|x) ∝
m∏

i=1

e−(xi−θ)2/2,

◮ And the complete-data likelihood

f(x, z|θ) = L(θ|x, z) ∝
m∏

i=1

e−(xi−θ)2/2
n∏

i=m+1

e−(zi−θ)2/2

⊲ With θ ∼ π(θ) we have the Gibbs sampler

π(θ|x, z) and f(z|x, θ)

⊲ With stationary distribution π(θ, z|x), the posterior of θ and z.
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Missing Data and Latent Variables

Censored Normal

◮ Flat prior π(θ) = 1,

θ|x, z ∼ N
(

mx̄ + (n − m)z̄

n
,
1

n

)
,

Zi|x, θ ∼ ϕ(z − θ)

{1 − Φ(a − θ)}

◮ Each Zi must be greater than the truncation point a

◮ Many ways to generate Z (AR, rtrun from the package bayesm, PIT)

◮ R code
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Missing Data and Latent Variables

Genetic Linkage

◮ We previously saw the classic genetic linkage data

◮ Such models abound

◮ Here is another, more complex, model

Observed genotype frequencies on blood type data

Genotype Probability Observed Probability Frequency

AA p2
A A p2

A + 2pApO nA = 186

AO 2pApO

BB p2
B B p2

B + 2pBpO nB = 38

BO 2pBpO

AB 2pApB AB 2pApB nAB = 13

OO p2
O O p2

O nO = 284

◮ Dominant allele → missing data

◮ Cannot observe AO or BO

◮ Observe X ∼ M4

(
n; p2

A + 2pApO, p2
B + 2pBpO, pApB, p2

O

)

⊲ pA + pB + pO = 1
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Missing Data and Latent Variables

Latent Variable Multinomial

◮ The observed data likelihood is

L(pA, pB, pO|X) ∝ (p2
A + 2pApO)nA(p2

B + 2pBpO)nB(pApB)nAB(p2
O)nO

◮ With missing data (latent variables) ZA and ZB, the complete-data likelihood is

L(pA, pB, pO|X, ZA, ZB) ∝ (p2
A)ZA(2pApO)nA−ZA(p2

B)ZB(2pBpO)nB−ZB(pApB)nAB(p2
O)nO.

◮ Giving the missing data density

(
p2

A

p2
A + 2pApO

)ZA
(

2pApO

p2
A + 2pApO

)nA−ZA
(

p2
B

p2
B + 2pBpO

)ZB
(

2pBpO

p2
B + 2pBpO

)nB−ZB

◮ And the Gibbs sampler

pA, pB, pO|X,ZA, ZB ∼ Dirichlet, ZA, ZB|pA, pB, pO ∼ Independent Binomial
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Missing Data and Latent Variables

Analysis of Blood Types

◮ Estimated genotype frequencies

◮ Fisher had first developed these models

⊲ But he could not do the estimation: No EM, No Gibbs in 1930
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Multi-Stage Gibbs Samplers

Hierarchical Structures

◮ We have seen the multistage Gibbs sampler applied to a number of examples

⊲ Many arising from missing-data structures.

◮ But the Gibbs sampler can sample from any hierarchical model

◮ A hierarchical model is defined by a sequence of conditional distributions

⊲ For instance, in the two-level generic hierarchy

Xi ∼ fi(x|θ), i = 1, . . . , n , θ = (θ1, . . . , θp) ,

θj ∼ πj(θ|γ), j = 1, . . . , p , γ = (γ1, . . . , γs) ,

γk ∼ g(γ), k = 1, . . . , s.

◮ The joint distribution from this hierarchy is
n∏

i=1

fi(xi|θ)

p∏

j=1

πj(θj|γ)
s∏

k=1

g(γk) .
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Multi-Stage Gibbs Samplers

Simulating from the Hierarchy

◮ With observations xi the full posterior conditionals are

θj ∝ πj(θj|γ)

n∏

i=1

fi(xi|θ), j = 1, . . . , p ,

γk ∝ g(γk)

p∏

j=1

πj(θj|γ), k = 1, . . . , s .

⊲ In standard hierarchies, these densities are straightforward to simulate from

⊲ In complex hierarchies, we might need to use a Metropolis–Hastings step

⊲ Main message: full conditionals are easy to write down given the hierarchy

�Note:

◮ When a full conditional in a Gibbs sampler cannot be simulated directly

⊲ One Metropolis–Hastings step is enough
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Multi-Stage Gibbs Samplers

The Pump Failure Data

Example: Nuclear Pump Failures

◮ A benchmark hierarchical example in the Gibbs sampling literature

◮ Describes multiple failures of pumps in a nuclear plant

◮ Data:

Pump 1 2 3 4 5 6 7 8 9 10

Failures 5 1 5 14 3 19 1 1 4 22

Time 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48

◮ Model: Failure of ith pump follows a Poisson process

◮ For time ti, the number of failures Xi ∼ P(λiti)
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Multi-Stage Gibbs Samplers

The Pump Failure Hierarchy

◮ The standard priors are gammas, leading to the hierarchical model

Xi ∼ P(λiti), i = 1, . . . 10,

λi ∼ G(α, β), i = 1, . . . 10,

β ∼ G(γ, δ).

◮ With joint distribution
10∏

i=1

{
(λiti)

xi e−λiti λα−1
i e−βλi

}
β10αβγ−1e−δβ

◮ And full conditionals

λi|β, ti, xi ∼ G(xi + α, ti + β), i = 1, . . . 10,

β|λ1, . . . , λ10 ∼ G
(

γ + 10α, δ +
10∑

i=1

λi

)
.
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Multi-Stage Gibbs Samplers

The Pump Failure Gibbs Sampler

◮ The Gibbs sampler is easy

◮ Some selected output here

◮ Nice autocorrelations

◮ R code

◮ Goal of the pump failure data is to identify which pumps are more reliable.

⊲ Get 95% posterior credible intervals for each λi to assess this
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Other Considerations

Reparameterization

◮ Many factors contribute to the convergence properties of a Gibbs sampler

◮ Convergence performance may be greatly affected by the parameterization

◮ High covariance may result in slow exploration.

Simple Example

◮ Autocorrelation for ρ = .3, .6, .9

◮ (X, Y ) ∼ N2

(
0,

(
1 ρ

ρ 1

))

◮ X + Y and X − Y are independent



Monte Carlo Methods with R: Gibbs Samplers [198]

Reparameterization

Oneway Models

◮ Poor parameterization can affect both Gibbs sampling and Metropolis–Hastings

◮ No general consensus on a solution

⊲ Overall advice ⇒ make the components as independent as possible

◮ Example: Oneway model for the energy data

◮ Then

Yij ∼ N (θi, σ
2),

θi ∼ N (µ, τ 2),

µ ∼ N (µ0, σ
2
µ),

◮ µ at second level

◮ Now

Yij ∼ N (µ + θi, σ
2),

θi ∼ N (0, τ 2),

µ ∼ N (µ0, σ
2
µ).

◮ µ at first level
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Reparameterization

Oneway Models for the Energy Data

◮ Top = Then

◮ Bottom = Now

◮ Very similar

◮ Then slightly better?
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Reparameterization

Covariances of the Oneway Models

◮ But look at the covariance matrix of the subchain (µ(t), θ
(t)
1 , θ

(t)
2 )

Then: Yij ∼ N (θi, σ
2) Now: Yij ∼ N (µ + θi, σ

2)




1.056 −0.175 −0.166
−0.175 1.029 0.018
−0.166 0.018 1.026








1.604 0.681 0.698
0.681 1.289 0.278
0.698 0.278 1.304



 ,

◮ So the new model is not as good as the old

◮ The covariances are all bigger

⊲ It will not mix as fast

◮ A pity: I like the new model better
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Rao–Blackwellization

Introduction

◮ We have already seen Rao–Blackwellization in Chapter 4

⊲ Produced improved variance over standard empirical average

◮ For (X, Y ) ∼ f(x, y), parametric Rao–Blackwellization is based on

⊲ E[X ] = E[E[X|Y ]] = E[δ(Y )]

⊲ var[δ(Y )] ≤ var(X)

Example: Poisson Count Data

◮ For 360 consecutive time units

◮ Record the number of passages of individuals per unit time past some sensor.

Number of passages 0 1 2 3 4 or more
Number of observations 139 128 55 25 13
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Rao–Blackwellization

Poisson Count Data

◮ The data involves a grouping of the observations with four passages or more.

◮ This can be addressed as a missing-data model

⊲ Assume that the ungrouped observations are Xi ∼ P(λ)

⊲ The likelihood of the model is

ℓ(λ|x1, . . . , x5) ∝ e−347λλ128+55×2+25×3

(
1 − e−λ

3∑

i=0

λi/i!

)13

for x1 = 139, . . . , x5 = 13.

◮ For π(λ) = 1/λ and missing data z = (z1, . . . , z13)

⊲ We have a completion Gibbs sampler from the full conditionals

Z
(t)
i ∼ P(λ(t−1)) Iy≥4, i = 1, . . . , 13,

λ(t) ∼ G
(

313 +
13∑

i=1

Z
(t)
i , 360

)
.
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Rao–Blackwellization

Comparing Estimators

◮ The empirical average is 1
T

∑T
t=1 λ(t)

◮ The Rao–Blackwellized estimate of λ is then given by

E

[
1

T

T∑

t=1

λ(t)
∣∣, z(t)

1 , . . . , z
(t)
13

]

=
1

360T

T∑

t=1

(

313 +

13∑

i=1

z
(t)
i

)

,

◮ Note the massive variance reduction.
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Generating Truncated Poisson Variables

Using While

◮ The truncated Poisson variable can be generated using the while statement

> for (i in 1:13){while(y[i]<4) y[i]=rpois(1,lam[j-1])}

or directly with

> prob=dpois(c(4:top),lam[j-1])

> for (i in 1:13) z[i]=4+sum(prob<runif(1)*sum(prob))

◮ Lets look at a comparison

◮ R code
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Gibbs Sampling with Improper Priors

Introduction

◮ There is a particular danger resulting from careless use of the Gibbs sampler.

◮ The Gibbs sampler is based on conditional distributions

◮ It is particularly insidious is that

(1) These conditional distributions may be well-defined

(2) They may be simulated from

(3) But may not correspond to any joint distribution!

◮ This problem is not a defect of the Gibbs sampler

◮ It reflects use of the Gibbs sampler when assumptions are violated.

◮ Corresponds to using Bayesian models with improper priors
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Gibbs Sampling with Improper Priors

A Very Simple Example

◮ The Gibbs sampler can be constructed directly from conditional distributions

⊲ Leads to carelessness about checking the propriety of the posterior

◮ The pair of conditional densities X|y ∼ Exp(y) , Y |x ∼ Exp(x) ,

⊲ Well-defined conditionals with no joint probability distribution.

◮ Histogram and cumulative average

◮ The pictures are absolute rubbish!

◮ Not a recurrent Markov chain

◮ Stationary measure = exp(−xy)

◮ No finite integral
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Gibbs Sampling with Improper Priors

A Very Scary Example

◮ Oneway model Yij = µ + αi + εij,

⊲ αi ∼ N (0, σ2) and εij ∼ N (0, τ 2)

⊲ The Jeffreys (improper) prior for µ, σ, and τ is π(β, σ2, τ 2) = 1
σ2τ2 .

◮ Conditional distributions

αi|y, µ, σ2, τ 2 ∼ N
(

J(ȳi − µ)

J + τ 2σ−2
, (Jτ−2 + σ−2)−1

)
,

µ|α, y, σ2, τ 2 ∼ N (ȳ − ᾱ, τ 2/IJ),

σ2|α, µ, y, τ 2 ∼ IG(I/2, (1/2)
∑

i

α2
i ),

τ 2|α, µ, y, σ2 ∼ IG(IJ/2, (1/2)
∑

i,j

(yij − αi − µ)2),

◮ Are well-defined

◮ Can run a Gibbs sampler

◮ But there is no proper joint distribution

◮ Often this is impossible to detect by monitoring the output
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Gibbs Sampling with Improper Priors

A Final Warning

�

◮ Graphical monitoring cannot exhibit deviant behavior of the Gibbs sampler.

◮ There are many examples, some published, of null recurrent Gibbs samplers

⊲ Undetected by the user

◮ The Gibbs sampler is valid only if the joint distribution has a finite integral.

◮ With improper priors in a Gibbs sampler

⊲ The posterior must always be checked for propriety.

◮ Improper priors on variances cause more trouble than those on means
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Chapter 8: Monitoring Convergence of MCMC Algorithms

“Why does he insist that we must have a diagnosis? Some things are not
meant to be known by man.”

Susanna Gregory

An Unholy Alliance

This Chapter

◮ We look at different diagnostics to check the convergence of an MCMC algorithm

◮ To answer to question: “When do we stop our MCMC algorithm?”

◮ We distinguish between two separate notions of convergence:

⊲ Convergence to stationarity

⊲ Convergence of ergodic averages

◮ We also discuss some convergence diagnostics contained in the coda package
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Monitoring Convergence

Introduction

◮ The MCMC algorithms that we have seen

⊲ Are convergent because the chains they produce are ergodic.

◮ Although this is a necessary theoretical validation of the MCMC algorithms

⊲ It is insufficient from the implementation viewpoint

◮ Theoretical guarantees do not tell us

⊲ When to stop these algorithms and produce our estimates with confidence.

◮ In practice, this is nearly impossible

◮ Several runs of your program are usually required until

⊲ You are satisfied with the outcome

⊲ You run out of time and/or patience
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Monitoring Convergence

Monitoring What and Why

◮ There are three types of convergence for which assessment may be necessary.

◮ Convergence to the
stationary distribution

◮ Convergence of Averages

◮ Approximating iid Sampling
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Monitoring Convergence

Convergence to the Stationary Distribution

◮ First requirement for convergence of an MCMC algorithm

⊲ (x(t)) ∼ f , the stationary distribution

⊲ This sounds like a minimal requirement

◮ Assessing that x(t) ∼ f is difficult with only a single realization

◮ A slightly less ambitious goal: Assess the independence from the starting point
x(0) based on several realizations of the chain using the same transition kernel.

◮ When running an MCMC algorithm, the important issues are

⊲ The speed of exploration of the support of f

⊲ The degree of correlation between the x(t)’s
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Monitoring Convergence

Tools for AssessingConvergence to the Stationary Distribution

◮ A major tool for assessing convergence: Compare performance of several chains

◮ This means that the slower chain in the group governs the convergence diagnostic

◮ Multiprocessor machines is an incentive for running replicate parallel chains

⊲ Can check for the convergence by using several chains at once

⊲ May not be much more costly than using a single chain

◮ Looking at a single path of the Markov chain produced by an MCMC algorithm
makes it difficult to assess convergence

◮ MCMC algorithms suffer from the major defect that

⊲ “you’ve only seen where you’ve been”

◮ The support of f that has not yet been visited is almost impossible to detect.
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Monitoring Convergence

Convergence of Averages

◮ A more important convergence issue is convergence of the empirical average

1

T

T∑

t=1

h(x(t)) → BEf [h(X)]

◮ Two features that distinguish stationary MCMC outcomes from iid ones

⊲ The probabilistic dependence in the sample

⊲ The mixing behavior of the transition,

⊲ That is, how fast the chain explores the support of f

◮ “Stuck in a mode” might appear to be stationarity

⊲ The missing mass problem again

◮ Also: The CLT might not be available
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Monitoring Convergence

Approximating iid sampling

◮ Ideally, the approximation to f provided by MCMC algorithms should

⊲ Extend to the (approximate) production of iid samples from f .

◮ A practical solution to this issue is to use subsampling (or batch sampling)

⊲ Reduces correlation between the successive points of the Markov chain.

◮ Subsampling illustrates this general feature but it loses in efficiency

◮ Compare two estimators

⊲ δ1: Uses all of the Markov chain

⊲ δ2: Uses subsamples

◮ It can be shown that
var(δ1) ≤ var(δ2)
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Monitoring Convergence

The coda package

◮ Plummer et al. have written an R package called coda

◮ Contains many of the tools we will be discussing in this chapter

◮ Download and install with library(coda)

◮ Transform an MCMC output made of a vector or a matrix into an MCMC object
that can be processed by coda, as in

> summary(mcmc(X))

or

> plot(mcmc(X))
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Monitoring Convergence to Stationarity

Graphical Diagnoses

◮ A first approach to convergence control

⊲ Draw pictures of the output of simulated chains

◮ Componentwise as well as jointly

⊲ In order to detect deviant or nonstationary behaviors

◮ coda provides this crude analysis via the plot command

◮ When applied to an mcmc object

⊲ Produces a trace of the chain across iterations

⊲ And a non-parametric estimate of its density, parameter by parameter
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Monitoring Convergence to Stationarity

Graphical Diagnoses for a Logistic Random Effect Model

Example: Random effect logit model

◮ Observations yij are modeled conditionally on one covariate xij as

P (yij = 1|xij, ui, β) =
exp {βxij + ui}

1 + exp {βxij + ui}
, i = 1, . . . , n, j = 1, . . . ,m

⊲ ui ∼ N (0, σ2) is an unobserved random effect

⊲ This is missing data

◮ We fit this with a Random Walk Metropolis–Hastings algorithm.
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Monitoring Convergence to Stationarity

Fitting a Logistic Random Effect Model

◮ The complete data likelihood is

∏

ij

(
exp {βxij + ui}

1 + exp {βxij + ui}

)yij
(

1

1 + exp {βxij + ui}

)1−yij

◮ This is the target in our Metropolis–Hastings algorithm

⊲ Simulate random effects u
(t)
i ∼ N(u

(t−1)
i , σ2)

⊲ Simulate the logit coefficient β(t) ∼ N(β(t−1), τ 2)

⊲ Specify σ2 and τ 2

◮ σ2 and τ 2 affect mixing
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Monitoring Convergence to Stationarity

ACF and Coda

◮ Trace and acf: ◮ Coda

◮ R code
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Tests of Stationarity

Nonparametric Tests: Kolmogorov-Smirnov

◮ Other than a graphical check, we can try to test for independence

◮ Standard non-parametric tests of fit, such as Kolmogorov–Smirnov

⊲ Apply to a single chain to compare the distributions of the two halves

⊲ Also can apply to parallel chains

◮ There needs to be a correction for the Markov correlation

⊲ The correction can be achieved by introducing a batch size

◮ We use

K =
1

M
sup

η

∣∣∣∣∣∣

M∑

g=1

I(0,η)(x
(gG)
1 ) −

M∑

g=1

I(0,η)(x
(gG)
2 )

∣∣∣∣∣∣

⊲ With G = batch size, M = sample size
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Tests of Stationarity

Kolmogorov-Smirnov for the Pump Failure Data

Example: Poisson Hierarchical Model

◮ Consider again the nuclear pump failures

◮ We monitor the subchain (β(t)) produced by the algorithm

⊲ We monitor one chain split into two halves

⊲ We also monitor two parallel chains

◮ Use R command ks.test

◮ We will see (next slide) that the results are not clear
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Monitoring Convergence

Kolmogorov-Smirnov p-values for the Pump Failure Data

◮ Upper=split chain; Lower = Parallel chains; L → R: Batch size 10, 100, 200.

◮ Seems too variable to be of little use

◮ This is a good chain! (fast mixing, low autocorrelation)
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Monitoring Convergence

Tests Based on Spectral Analysis

◮ There are convergence assessments spectral or Fourier analysis

◮ One is due to Geweke

⊲ Constructs the equivalent of a t test

⊲ Assess equality of means of the first and last parts of the Markov chain.

◮ The test statistic is
√

T (δA − δB)

/√
σ2

A

τA
+

σ2
B

τB
,

⊲ δA and δB are the means from the first and last parts

⊲ σ2
A and σ2

B are the spectral variance estimates

◮ Implement with geweke.diag and geweke.plot
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Monitoring Convergence

Geweke Diagnostics for Pump Failure Data

◮ For λ1

⊲ t-statistic = 1.273

⊲ Plot discards successive
beginning segments

⊲ Last z-score only uses last half of chain

◮ Heidelberger and Welch have a similar test: heidel.diag
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Monitoring Convergence of Averages

Plotting the Estimator

◮ The initial and most natural diagnostic is to plot the evolution of the estimator

◮ If the curve of the cumulated averages has not stabilized after T iterations

⊲ The length of the Markov chain must be increased.

◮ The principle can be applied to multiple chains as well.

⊲ Can use cumsum, plot(mcmc(coda)), and cumuplot(coda)

◮ For λ1 from Pump failures

◮ cumuplot of second half
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Monitoring Convergence of Averages

Trace Plots and Density Estimates

◮ plot(mcmc(lambda)) produces two graphs

◮ Trace Plot

◮ Density Estimate

◮ Note: To get second half of chain temp=lambda[2500:5000], plot(mcmc(temp))
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Monitoring Convergence of Averages

Multiple Estimates

◮ Can use several convergent estimators of Ef [h(θ)] based on the same chain

⊲ Monitor until all estimators coincide

◮ Recall Poisson Count Data

⊲ Two Estimators of Lambda: Empirical Average and RB

⊲ Convergence Diagnostic → Both estimators converge - 50,000 Iterations
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Monitoring Convergence of Averages

Computing Multiple Estimates

◮ Start with a Gibbs sampler θ|η and η|θ
◮ Typical estimates of h(θ)

⊲ The empirical average ST = 1
T

∑T
t=1 h(θ(t))

⊲ The Rao–Blackwellized version SC
T = 1

T

∑T
t=1 E[h(θ)|η(t)] ,

⊲ Importance sampling: SP
T =

∑T
t=1 wt h(θ(t)),

⊲ wt ∝ f(θ(t))/gt(θ
(t))

⊲ f = target, g = candidate
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Monitoring Convergence of Multiple Estimates

Cauchy Posterior Simulation

◮ The hierarchical model

Xi ∼ Cauchy(θ), i = 1, . . . , 3

θ ∼ N(0, σ2)

◮ Has posterior distribution

π(θ|x1, x2, x3) ∝ e−θ2/2σ2
3∏

i=1

1

(1 + (θ − xi)2)

◮ We can use a Completion Gibbs sampler

ηi|θ, xi ∼ Exp

(
1 + (θ − xi)

2

2

)
,

θ|x1, x2, x3, η1, η2, η3 ∼ N
(

η1x1 + η2x2 + η3x3

η1 + η2 + η3 + σ−2
,

1

η1 + η2 + η3 + σ−2

)
,
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Monitoring Convergence of Multiple Estimates

Completion Gibbs Sampler

◮ The Gibbs sampler is based on the latent variables ηi, where
∫

e−
1
2ηi(1+(xi−θ)2)dηi =

2

1 + (xi − θ)2

◮ With

ηi ∼ Exponential

(
1

2
(1 + (xi − θ)2)

)

◮ Monitor with three estimates of θ

⊲ Empirical Average

⊲ Rao-Blackwellized

⊲ Importance sample
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Monitoring Convergence of Multiple Estimates

Calculating the Estimates

◮ Empirical Average

1

M

M∑

j=1

θ̂(j)

◮ Rao-Blackwellized

θ|η1, η2, η3 ∼ N




∑

i ηixi
1
σ2 +

∑
i ηi

,

[
1

σ2
+
∑

i

ηi

]−1




◮ Importance sampling with Cauchy candidate
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Monitoring Convergence of Multiple Estimates

Monitoring the Estimates

◮ Emp. Avg

◮ RB

◮ IS

⊲ Estimates converged

⊲ IS seems most stable

◮ When applicable, superior diagnostic to single chain

◮ Intrinsically conservative

⊲ Speed of convergence determined by slowest estimate
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Monitoring Convergence of Averages

Between and Within Variances

◮ The Gelman-Rubin diagnostic uses multiple chains

◮ Based on a between-within variance comparison (anova-like)

⊲ Implemented in coda as gelman.diag(coda) and gelman.plot(coda).

◮ For m chains {θ(t)
1 }, . . . {θ(t)

m }

⊲ The between-chain variance is BT =
1

M − 1

M∑

m=1

(θm − θ)2 ,

⊲ The within-chain variance is WT = 1
M−1

∑M
m=1

1
T−1

∑T
t=1 (θ

(t)
m − θm)2

◮ If the chains have converged, these variances are the same (anova null hypothesis)
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Monitoring Convergence of Averages

Gelman-Rubin Statistic

◮ BT and WT are combined into an F -like statistic

◮ The shrink factor, defined by

R2
T =

σ̂2
T +

BT

M
WT

νT + 1

νT + 3
,

⊲ σ̂2
T = T−1

T
WT + BT .

⊲ F -distribution approximation

◮ Enjoyed wide use because of simplicity and intuitive connections with anova

◮ RT does converge to 1 under stationarity,

◮ However, its distributional approximation relies on normality

◮ These approximations are at best difficult to satisfy and at worst not valid.
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Monitoring Convergence of Averages

Gelman Plot for Pump Failures

◮ Three chains for λ1

◮ nsim=1000

◮ Suggests convergence

◮ gelman.diag gives

Point est. 97.5 % quantile

1.00 1.01

◮ R code
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We Did All This!!!

1. Intro 5. Optimization

x

D
e

n
si

ty

0 10 20 30 40 50

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

2. Generating 6. Metropolis

3. MCI 7. Gibbs

4. Acceleration 8. Convergence
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Thank You for Your Attention

George Casella

casella@ufl.edu


