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Based on

• Statistical Design, 2008, Springer-Verlag

•Data and R programs for the course available at
http://www.stat.ufl.edu/ casella/StatDesign
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And so it was ... borne in upon me that very often, when

the most elaborate statistical refinements possible could

increase the precision by only a few percent, yet a differ-

ent design involving little or no additional experimental

labour might increase the precision two-fold, or five-fold

or even more..

R. A. Fisher
The Place of the Design of Experiments in the Logic of

Scientific Inference, 1962
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The Chapters

• Basics

• Completely Randomized Designs

• Blocking - Complete Designs

• Blocking with Fixed Blocks

• Split Plots

• Confounding - Incomplete Designs



Statistical Design: Basics [4]

Chapter 1: Basics

•Our concern is design, not analysis

• Good designs should result in a straightforward analysis

• Results presented in an anova framework,

◦ Because the anova is the best way to think about data
and plan designs.

◦ Fisher (1934) first called the anova

“a convenient method of arranging the arithmetic

•We first review “basics”
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A Oneway Model

Yij = µ + τi + εij, i = 1, . . . , t; j = 1, . . . , r,

• Example:
Dry weight, in grams, of Geranium ‘Dilys’, subject to three fertilizer treatments.

Fertilizer
A B C

1.02 1.00 .99

.79 1.21 1.36
1.00 1.22 1.17
.59 .96 1.22

.97 .79 1.12

•Oneway anova with

µ = true overall dry weight

τi = true change in dry weight due to fertilizer i

yij = observed yield of plant j in treatment i

εij = unobserved error
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Oneway Model Properties

• The model

Yij = µ + τi + εij, i = 1, . . . , t; j = 1, . . . , r,

◦ is overparameterized

◦ is nonidentifiable

• Identifiability restriction
∑

i τi = 0.

• For example,

E Ȳi· =
1

r
E





∑

j

µ + τi + εij



 = µ + τi,

E Ȳ =
1

rt
E





∑

ij

µ + τi + εij



 = µ + τ̄ ,

◦ µ + τi and µ + τ̄ have unbiased estimators
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Experimental Unit (EU)

• Perhaps the most important concept in statistical design

• The experimental unit is the unit (subject, plant, pot,
animal) which is randomly assigned to a treatment.

• The experimental unit defines the unit to be replicated
to increase degrees of freedom.

◦ Fertilizer is applied to the pots. Plants are not the EU.

◦Different food placed in tanks containing the fish.
Fish are not the EU

◦ RNA is applied to a microarray. The EU is the subject.
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Some Principles

• The experimental unit must be “randomly assigned”.

◦One batch of fertilizer applied to five pots ⇒ one EU

◦ Food placed directly in the fish’s mouth must be prepared
independently for each fish

• A sampling unit is the object that is measured in an ex-
periment. It may be different from the experimental unit.

• Replication is the repetition of the experimental situation
by replicating the experimental unit.

⊲ Experimental Unit=Pot

⊲ Sampling Unit =Plant
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Replication

• The anova table for the Fish Tanks is

Source df Mean Square F Ratio

Diets 2 MS(Diet) MS(Diet)/MS(Tank)

Tanks (in Diets) 9 MS(Tank)

Fish (in Tanks) 60 MS(Fish)

• F test on diets has low df.

• Replicating the fish is subsampling or pseudo-replication

• This is an example of a nested design

• Test tanks using
MS(Tank)
MS(Fish)

, typically not of interest
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Know the Denominator

• Key principle

• For Tests or Intervals

◦ Increase # of Pots (Plants don’t help)

◦ Increase # of Tanks (Fish don’t help)

• That is, for a given number of plants (fish)

◦Maximize the number of pots(tanks)
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Variance and Covariance

• In the model

Yij = µ + τi + εij, i = 1, . . . , t; j = 1, . . . , r,

with
E(εij) = 0, Var(εij) = σ2.

• Can estimate all τi − τ̄ and σ2

E
(

Ȳi· − ¯̄Y
)

= τi − τ̄ .

Var
(

Ȳi· − ¯̄Y
)

=
σ2

r

(

1 − 1

t

)
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My Favorite Formula

Var(Y ) = Var[E(Y |X)] + E[Var(Y |X)]

• Anova Decomposition

◦ SS(Total) = SS(Trt) + SS(Within Trts)

◦∑t
i=1

∑r
j=1(yij − y)2 =

∑t
i=1 r(yi· − y)2 +

∑t
i=1

∑r
j=1(yij − yi·)

2.

• Rao-Blackwell

◦ Var(Y ) ≥ Var[E(Y |X)]
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Orthogonal and Uncorrelated

A Oneway Model

Yij = θi + εij, i = 1, . . . , t; j = 1, . . . , ri,

∑t
i=1 aiθi

∑

i ai = 0 Contrast

∑t
i=1 aiθi and

∑t
i=1 biθi

∑t
i=1 aibi = 0 Orthogonal Contrasts

∑t
i=1 aiȳi and

∑t
i=1 biȳi

∑t
i=1 aibi = 0 Orthogonal Contrasts

∑t
i=1 aiȳi and

∑t
i=1 biȳi

∑t
i=1 aibi/ri = 0 Uncorrelated Contrasts

•Do we want orthogonal or uncorrelated?
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Rehabilitation Time

• Y = rehabilitation time from knee surgery

• Group = prior physical fitness

• 24 men, aged 18 − 30

Physical Condition
Poor Below Above Excellent

Condition Average Average Condition
42 29 28 26
... ... ... ...

42 31 33 22
r 5 8 7 4
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Which Contrasts?
Physical Condition

Poor Below Above Excellent
Condition Average Average Condition

42 29 28 26
...

...
...

...

42 31 33 22

r 5 8 7 4

µ1 µ2 µ3 µ4
1 -1/3 -1/3 -1/3
0 1 -1/2 -1/2
0 0 1 -1

Orthogonal

Does Not Partition
Treatment SS

µ1 µ2 µ3 µ4
1 -8/19 -7/19 -4/19
0 1 -4/11 -7/11
0 0 1 -1

Uncorrelated

Partitions Treatment SS

But useless for inference
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Randomization, Layouts and Designs

Example: Problematic Inference

• Forestry Experiment: Five varieties of Pine

• Four years of Greenhouse Experiments

• Variety B recommended as Best

◦ Evidence Overwhelming

◦ 10 lumber companies planted the recommended variety
on half of their replacement acreage

◦ 8 of the companies complained that variety B pine trees
were only 75% as tall as “an old standby variety”.

•What Happened?
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Possible Explanations

(1) This all happened by chance.

(2) Trees were not randomly assigned in the greenhouse, and
variety B received optimal conditions

(3) Experiment was properly done, but not representative.

• Randomization cannot do much about (1) or (3)

◦ This is a Block × Treatment interaction

• Proper randomization should guard against (2).
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Desirable Outcomes from Randomization

• Elimination of systematic bias.

◦ Gradients of light or temperature,

◦Dye-bias in microarray experiments

◦ Interviewer bias in surveys

•Obtaining a representative sample.

• Accounting for extraneous (unknown) confounding vari-
ables.

...the uncontrolled causes which may influence the result

are always strictly innumerable

R. A. Fisher

The Design of Experiments, Section II.9
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Treatment Design

• There are two parts to a design

• Experiment Design - Later

• Treatment Design

◦ How the levels of treatments are arranged

◦ Typically crossed or nested

◦ Can be either complete or incomplete
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Treatment Design

Crossed
A

1 2 3 4
B

1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

B
1 2 3
x x x

Nested
A

1 2 3 4
B

1 2 3
x x x

B
4 5 6
x x x

B
7 8 9
x x x

B
10 11 12
x x x
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This Confuses Students

• This “looks like” a oneway anova on treatments.

Treatment

1 2 3

Subject

1 2 3 4 5

x x x x x

Subject

1 2 3 4 5

x x x x x

Subject

1 2 3 4 5

x x x x x

• But this is an RCB
Subject

1 2 3 4 5

1 x x x x x

Treatment 2 x x x x x

3 x x x x x

◦ Random Factor ⇒ Correlation

◦ Bring Correlation to the Top
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The Treatment Design Tells us

• How to count degrees of freedom

• How to calculate sums of square

• How to calculate least squares estimates

◦We need more information to form F -ratios

◦ That is the Experiment Design.
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Experiment Design

• How EUs are randomized to treatments

• How the data are actually collected

◦ The error structure is a consequence

◦ Tells how to form F -ratios
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Choices in a Twoway Crossed Design

• Possible anovas corresponding to
(a) complete randomization

(b) restriction of randomization of one factor

(c) restriction of randomization of both factors

Choices

F -ratio

Source (a) (b) (c)

A MS(A)

MS(Within)

MS(A)

MS(Within)

MS(A)

MS(A × B)

B MS(B)

MS(Within)

MS(B)

MS(A × B)

MS(B)

MS(A × B)

A × B MS(A × B)

MS(Within)

MS(A × B)

MS(Within)

MS(A × B)

MS(Within)

CRD
A

Random

B

Random
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Choices in a Twoway Crossed Design

• Possible field layouts corresponding to

(a) complete randomization - CRD

(b) restriction of randomization of one factor - RCB

(c) restriction of randomization of both factors - Strip Plot

(a) (b) (c)

A1B1 A2B1 A1B3

A1B2 A3B3 A3B2

A3B1 A2B2 A2B3

A2B1 A3B2 A1B3

A1B1 A2B2 A3B3

A3B1 A1B2 A2B3

A1B1 A1B2 A1B3

A3B1 A3B2 A3B3

A2B1 A2B2 A2B3
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Replication: True and Technical

• True replication ⇒ EU is replicated

• Technical replication ⇒ EU is subsampled.

Example: Microarray Experiment

• RNA was harvested from two wild-type human cell lines

• They were grown unirradiated (U) or irradiated (I)

• Cell lines and irradiated state are crossed treatments.

◦ RNA samples split: independent hybridizations A and B

◦ Eight hybridizations

U I

Sample 1 A B A B

Sample 2 A B A B
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Which One?

1.

Treatment

U I

x x

x x

x x

x x

Anova

Source df

Treatments(U/I) 1

Within 6

Total 7

2.

Treatment

U I

x x

Line 1 x x

x x

Line 2 x x

Anova

Source df

Blocks(Lines) 1

Treatments(U/I) 1

B × T 1

Subsampling 4

Total 7
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Pooling and Pooling

Example: Effect of shipping and storage on avocados

• Three shipping methods (increasingly expensive)

• Two storage methods (also increasingly expensive)

• Also Shipments (which act as blocks)

◦ Four crates of avocados/each Trt combination

◦ An RCB
Shipment

1 2 3

Storage Storage Storage
1 2 1 2 1 2

Shipping 1
x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

Method 2
x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

x x
x x

3
x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x
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Two Anovas

Anova

Source df

Blocks (Shipments) 2

Shipping Method 2

Storage 1

Shipping × Storage 2

Residual 64

Total 71

• Naive Analysis

• All Tests Against Residual

• Pooling Interaction and Within

inflates α (anticonservative)
• The 54 df are wasted

Source df

Blocks(Shipments) 2

Shipping 2

Storage 1

Shipping × Storage 2

Residual 64

B × Ship 4

B × Stor 2

B × Ship × Stor 4

Within 54

Total 71

• Better Analysis

• Individual Tests?

• Pooling three interaction terms
is conservative
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...and Pooling EUs, such as RNA

• Changes the EU from the subject to the pool of subjects

◦ The between subject variation, is reduced

◦ The df are based on the number of pools, not subjects

Var(Ȳi··) =
1

rp

(

σ2
B +

σ2
W

s

)

.

◦ r= # of replications

◦ p= # of pools

◦ s= # of subsamples
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Example

1. Give randomization plans for the following two experiments:

(1) Treatment A, three varieties of alfalfa, is crossed with
treatment B, three types of fertilizer. The response vari-
able is dry weight.

(2) Blood pressure of human subjects is measured. Classifi-
cation A, consisting of three age classes, is crossed with
classification B, consisting of three weight classes.
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Randomizations

• Possible Randomizations
(a) (b) (c)

A1B1 A2B1 A1B3

A1B2 A3B3 A3B2

A3B1 A2B2 A2B3

A2B1 A3B2 A1B3

A1B1 A2B2 A3B3

A3B1 A1B2 A2B3

A1B1 A1B2 A1B3

A3B1 A3B2 A3B3

A2B1 A2B2 A2B3

(1) Randomization Throughout. Choose a variety and a treat-
ment at random, or choose a weight class and an age class
at random, and take the measure.

(2) The Fertilizeris applied to a plot, and three levels of Variety
are randomized. Or we choose and age class at random,
and measure three people of different weights.

(3) Fertilizer is applied in one direction, and Varieties are planted
in the other. This is problematic for the other experiment,
as the treatments are not “applied”.
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Chapter 2: Completely Randomized Designs

If the idea looked lousy, I said it looked lousy. If it looked

good, I said it looked good. Simple proposition.

Richard P. Feynman
Surely You’re Joking, Mr. Feynman
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Introduction

• CRDs have only fixed factors

• All tests against within error

• A model for the twoway CRD is

Yijk = µ + τi + γj + (τγ)ij + εijk,

i = 1, . . . , t; j = 1, . . . , g, k = 1, . . . , r

◦ Yijk is the observed response

◦ τi is one treatment effect

◦ γj is the other treatment effect

◦ (τγ)ij represents the interaction

◦ εijk is the error
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CRD Assumptions

Yijk = µ + τi + γj + (τγ)ij + εijk,

i = 1, . . . , t; j = 1, . . . , g, k = 1, . . . , r

◦ εijk ∼ N(0, σ2)

◦ Corr(εijk, εi′j′k′) = 0.

•We can also also assume (for free)

τ̄ = γ̄ = ¯(τγ) = 0,

◦ Just redefines µ
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CRD Assumptions

Yijk = µ + τi + γj + (τγ)ij + εijk

• For identifiability we need

¯(τγ)i· = ¯(τγ)·j = 0, for all i, j

• This is not free

• This is a redefinition of the parameters

τ ′i = τi + ¯(τγ)i·
γ′j = γj + ¯(τγ)·j

(τγ)′ij = (τγ)ij − ¯(τγ)i· − ¯(τγ)·j.

• The average interaction effect does not go away

◦ It relocates
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Twoway Example

Example: The effect of sulphur and nitrogen on red clover

•Dry matter yields, grams/pot
Sulphur

0 3 6 9

0
4.48
4.52

4.63

4.70
4.65

4.57

5.21
5.23

5.28

5.88
5.98

5.88
Nitrogen −−−−−−−

20

5.76

5.72
5.78

7.01

7.11
7.02

5.88

5.82
5.73

6.26

6.26
6.37

• Twoway CRD anova

Source df Sum Sq Mean Sq F p

Sulphur 3 3.06 1.02 285.53 < .00001

Nitrogen 1 7.83 7.83 2185.63 < .00001

Sulphur × Nitrogen 3 3.76 1.25 349.78 < .00001

Within 16 0.057 0.0036
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Expected Mean Squares and F -tests

• Indicates the correct denominators for F -test

• Shows which replication controls sources of variation

• Helps us in setting up a better design.

Expected Mean Squares for twoway CRD anova

Source df EMS
Treatment T t − 1 σ2 + rg

t−1

∑

i τ
2
i

Treatment G g − 1 σ2 + rt
g−1

∑

j γ2
i

T × G (t − 1)(g − 1) σ2 + r
(t−1)(g−1)

∑

ij(τγ)2ij

Within tg(r − 1) σ2

•H0 :
∑

i τ
2
i = 0, etc.
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Estimating Contrasts

Under the model

Yijk ∼ N
(

µ + τi + γj + (τγ)ij, σ
2
)

, Cov(Yijk, Yi′j′k′) = 0,

•
∑

i aiȲi·· ∼ N
(

∑

i aiτi,
σ2

rg

∑

i a
2
i

)

•
∑

i aiȲi··−
∑

i aiτi
√

σ̂2
rg

∑

i a
2
i

∼ ttg(r−1).

◦With σ̂2 = MS(Within)/tg(r − 1)

• This follows from Cochran’s Theorem
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Cochran’s Theorem

Theorem

◦Y ∼ N (0, Σ)

◦Ak, k = 1, 2, . . . ,m satisfy
∑m

k=1 Ak = A

◦AΣ is idempotent

If AkΣ is idempotent for every k and AkΣAk′ = 0, k 6= k′,

(1) Y′AkY ∼ χ2
tr(AkΣ)

for every k

(2) Y′AkY and Y′Ak′Y are independent for k 6= k′

(3) Y′AY ∼ χ2
tr(AΣ)

.
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Interactions

50 100 150 200
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Interaction plot
- fish tissue experiment-

Qualitative

Interaction plot
- red clover experiment-

Quantitative
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Adjusting for Covariates

• A covariate is like a block, in that it removes variation.

• A covariate satisfies two conditions:

◦ The covariate is related to the response, and can account
for variation

◦ The covariate is not related to the treatment. Important!

Response Covariate

plant yield density/plot of the plants
growth of laboratory rats initial weight of the rats
florescence of a spot spot size
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Covariates
Varieties

Cornell Robson Ohio Ohio

M-4 360 K-24 M-15

Obs. X Y X Y X Y X Y

1 20 12.8 20 12.2 20 14.1 13 8.6

2 17 11.0 20 10.0 20 13.1 18 10.2
3 20 10.9 16 9.8 20 12.8 17 8.7

4 15 9.1 20 9.8 20 11.8 14 7.3
5 20 9.6 19 9.8 20 10.8 15 9.3
6 15 9.3 20 12.1 13 7.8 11 8.2

10 12 14 16 18 20

6
7

8
9

10
11

12
13

Number of Plants

Yi
el

d

M − 4

10 12 14 16 18 20

6
7

8
9

10
11

12
13

360

10 12 14 16 18 20

6
7

8
9

10
11

12
13

K − 24

10 12 14 16 18 20

6
7

8
9

10
11

12
13

M − 15

- Yields of varieties of corn
- Covariate = # plants/plot

- Regardless of the treatment
positive relationship between

yield and # plants/plot
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Ancova Models

•Oneway anova model

Yij = µ + τi + εij, i = 1, . . . t, j = 1, . . . , r.

• An ancova model

Yij = µ+τi+β(xij−x̄)+εij, i = 1, . . . t, j = 1, . . . , r,

◦ In each group, the slope is the same.

◦ This assumption is both crucial and bothersome
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Ancova - Testing Treatments

• The ancova hypotheses

H0 : Yij = µ+β(xij−x̄)+εij vs. H1 : Yij = µ+τi+β(xij−x̄)+εij,

• Two anova tables for the corn data are

Covariate After Treatment Treatment After Covariate

Source df SS MS

Varieties 3 27.955 9.318
Within 20 46.765 2.338

Plants 1 21.729 21.729
(after Varieties)
Residual 19 25.036 1.318

Source df SS MS

Plants 1 43.916 43.916

Residual 22 30.804 1.400
(from Regression)

Varieties 3 5.768 1.923

(after Plants)
Residual 19 25.036 1.318

• F =
Varieties (after Plants)

Residual
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Adjusted Means
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M − 4

10 12 14 16 18 20

6
7

8
9

10
11

12
13

Unadjusted

Number of Plants

Y
ie

ld

10 12 14 16 18 20

6
7

8
9

10
11

12
13

Unadjusted

Number of Plants

Y
ie

ld

10 12 14 16 18 20

6
7

8
9

10
11

12
13

Unadjusted
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Y
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6
7

8
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Number of Plants

Y
ie

ld

360

K − 24

M − 15

M − 4

Varieties
360 K-24 M-15 M-4

Unadjusted Mean 10.617 11.733 8.717 10.450

Std. Error 0.624 0.624 0.624 0.624

Adjusted Mean 11.447 12.384 7.124 10.562
Std. Error 0.496 0.486 0.563 0.469

• Anova adjusts to overall mean
• Ancova adjusts to

covariate means
• Variances may be reduced
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Variances May Be Reduced

• Average estimated variance

Var
(

(µ̂ + τi) − (µ̂ + τi′)
)

=
2σ̂2

r

(

1 +
1

(t − 1)

SS(Trtx)

SS(Withinx)

)

,

• The variance ↓ as σ̂2 ↓
◦ The regression of Y on X improves

• The variance ↑ if X is related to the treatment

◦ SS(Trtx)/SS(Withinx) ↑
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Example

• Fish microarray experiment

• Two treatments: Tissue Mass and presence or absence of
hCG (hormone)

• Treatment design:

Tissue Mass (mg)

50 100 150 200

hCG Yes x x x x

No x x x x

• Tissue Mass qualitative suggests polynomial contrasts.



Statistical Design: Completely Randomized Designs/Covariates [49]

Example

• A full set of orthogonal contrasts

• Contrasts can be generated in R with statements such as
contr.poly or contr.helmert

Linear Tissue

Mass (mg)

−3 −1 1 3

hCG 1 −3 −1 1 3

−1 3 1 −1 −3

Quadratic Tissue

Mass (mg)

1 −1 −1 1

hCG 1 1 −1 −1 1

−1 −1 1 1 −1

Cubic Tissue

Mass (mg)

−1 3 −3 1

hCG 1 −1 3 −3 1

−1 1 −3 3 −1



Statistical Design: Completely Randomized Designs/Covariates [50]

Example

• Anova Table
Source df

Tissue Mass 3

Linear 1

Quadratic 1

Cubic 1

hCG 1

Tissue Mass × hCG 3

Linear × hCG 1

Quadratic × hCG 1

Cubic × hCG 1

Within 4

Total 11

Df Sum Sq Mean Sq F value Pr(>F)
Tissue 3 1.67479 0.55826 0.7910 0.5589

hCG 1 0.43426 0.43426 0.6153 0.4767
Tissue:hCG 3 71.49048 0.49683 0.7039 0.5975

Residuals 4 2.823 19 0.70580



Statistical Design: Completely Randomized Designs/Covariates [51]

Answers

(a) For the linear interaction we have

Tissue
hCG -3 -1 1 3

3 1 -1 3

Lin Quad Cubic
SS 0.3333 0.4181 0.7391
F 0.4722 0.5924 1.0472
p 0.5298 0.4844 0.3640

• Not much happening



Statistical Design: Completely Randomized Designs/Covariates [52]

(b) For the main effect of tissue:
Lin Quad Cubic

SS 0.1263 1.5482 0.0003
F 0.1789 2.1936 0.0004

p 0.6941 0.2127 0.9853
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• Pretty Picture. Still not much happening.



Statistical Design: RCB [53]

Chapter 3: Randomized Complete Blocks

We shall need to judge of the magnitude of the dif-

ferences introduced by testing our treatments upon the

different plots by the discrepancies between the perfor-

mances of the same treatment in different blocks.

R. A. Fisher
The Design of Experiments, Section 26

I thanked him for the explanation; now I understood it.

I have to understand the world, you see.

Richard P. Feynman
Surely You’re Joking, Mr. Feynman



Statistical Design: RCB/Introduction [54]

Fixed or Random

• Blocks are typically treated as a random effect

• Clear instances where blocks are not random

• Covariance is the key to modeling

• Block Assumption ⇒ Scope of Inference

◦ Inference to Blocks in the model = Fixed Factor

◦ Inference to Blocks beyond the model = Random Factor

• Covariance is the key to modeling

◦ Yes, I know I repeated this!
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Fixed or Random

• Blocks are typically treated as a random effect

• Clear instances where blocks are not random

• Covariance is the key to modeling

• Block Assumption ⇒ Scope of Inference

◦ Inference to Blocks in the model = Fixed Factor

◦ Inference to Blocks beyond the model = Random Factor

• Covariance is the key to modeling

◦ Yes, I know I repeated this!



Statistical Design: RCB/Introduction [56]

Fixed and Random Blocks

A C B

10.1 8.4 6.3

B C A

6.9 9.4 10.8

C A B

9.0 9.8 5.3

A C B

10.5 9.2 6.2

Brand A Brand B Brand C

T

x x x

P x x x

x x x

x x x

T

x x x

P x x x

x x x

x x x

T

x x x

P x x x

x x x

x x x

• Three varieties of plants
• Four Blocks
• Random Blocks

• Six Treatment Combinations
• Three Brands (Blocks)
• Fixed Blocks

• In either case, correlation in the blocks



Statistical Design: RCB/Introduction [57]

Put the covariance at the top - Revisited

• A city considers purchasing outside sculpture pieces

• 40 pieces of art considered, grouped into four categories

◦ A total of 12 judges were available

◦ Each judge rated each piece of art on a 7-point scale

• Here is the data layout
Category

1 2 3 4
Art Art Art Art

1 2 · · · 10 11 12 · · · 20 21 22 · · · 30 31 32 · · · 40

Judges

1
...

12

x x · · · x
...

x x · · · x

x x · · · x
...

x x · · · x

x x · · · x
...

x x · · · x

x x · · · x
...

x x · · · x

•What is the design?



Statistical Design: RCB/Introduction [58]

Possible Anovas
Category

1 2 3 4
Art Art Art Art

1 2 · · · 10 11 12 · · · 20 21 22 · · · 30 31 32 · · · 40

Judges

1
...

12

x x · · · x
...

x x · · · x

x x · · · x
...

x x · · · x

x x · · · x
...

x x · · · x

x x · · · x
...

x x · · · x

• Original Analysis
• Fully Nested
• Covariance mishandled

• Recommended Analysis
• RCB
• Covariance correctly modelled

Source df

Cat 3

Art (in Cat) 36

Judges (in Art) 440

Total 479

Source df

Judges (Blocks) 11

Cat 3

Art (in Cat) 36

Cat × Judges 33

Art × Judges (in Cat) 396

Total 479



Statistical Design: RCB/Introduction [59]

Definitions

• The blocks are called complete blocks if every treatment
appears in every block,

• Classical model (no interaction?)

Yij = µ + τi + βj + εij, i = 1, . . . , t, j = 1, . . . , b,

◦One observation for each treatment–block combination

◦ No two observations taken under the same conditions.

◦ A most efficient design

• Randomization: In each block, the treatments are run in a
completely random manner



Statistical Design: RCB/ The RCB Anova [60]

RCB with Interaction

Yijk = µ + τi + βj + (τβ)ij + εijk,

i = 1, . . . , t, j = 1, . . . , b, k = 1, . . . , r

• In the RCB the error comes from the variation of treatment
contrasts across blocks, not from within a cell.

Source df SS MS F

Blocks b − 1 SS(Blocks)

Trts t − 1 SS(Trt) MS(Trt) F =
MS(Trt)

MS(T × B)
T × B (b − 1)(t − 1) SS(T × B) MS(T × B) F =?
Subsampling bt(r − 1) SS(Within) MS(Within)

•What is subsampling (Within) good for?



Statistical Design: RCB/ The RCB Anova [61]

RCB with Interaction

• Extra samples typically subsamples of the EU

◦ Test on treatments is exactly the same

◦ Presence of the within doesn’t matter

◦Waste of effort with respect to the test on treatments

Source df Sum Sq Mean Sq F p

Block 3 3.982 1.327

Variety 3 37.201 12.400 26.068 0.000

Variety × Block 9 4.281 0.476 1.880 0.092

Within 32 8.100 0.253

• Variety tested by Variety × Block

• Three observations/cell doesn’t help here

•We may be able to test the interaction



Statistical Design: RCB/Models [62]

Purpose of Blocking

• Blocking serves many purposes

•Within a block there is homogeneity

◦ Treatment comparisons are very precise

• Between blocks there is heterogeneity

◦ Treatments compared across a variety of situations

•We want “significant” blocks

SS(Total) − SS(Treatments) = SS(Blocks) + SS(T × B).



Statistical Design: RCB/Models [63]

Microarray Example

•Microarray Stem Cell experiment

• Effect of G-CSF on White blood cell production

◦ The dataset StemCell contains data for 250 genes
Genes

Subject Trt AFFX-BioB-5-at AFFX-BioB-M-at AFFX-BioB-3-at AFFX-BioC-5-at

1 Post 961 1734.3 825.7 2746.8

1 Pre 734.8 1239.7 607.3 2425
2 Post 1737.2 2926.7 1602.2 5256.6
2 Pre 755.5 1215.3 670.9 2306.3

3 Post 777.4 1597.8 750.3 2723.9
3 Pre 791.1 1349.7 711.2 2134.3

4 Post 1022.5 1761.7 871.8 2958.9
4 Pre 706.6 1145.8 596.1 2189

5 Post 754.9 1374.1 637.2 2334.4
5 Pre 809.8 1262.9 629.1 2100.7

• RCB for each gene • Subject = Blocks



Statistical Design: RCB/Models [64]

Means and Variances

Yij = µ + τi + βj + εij, i = 1, . . . , t, j = 1, . . . , b,

• εij ∼ iid N(0, σ2
ε)

• β1, . . . , βb, are iid N(0, σ2
β) and are independent of εij

◦ The mean and variance of Yij, conditional on the βjs:

E(Yij) = µ + τi + βj, Var (Yij) = σ2
ε.

◦ The unconditional mean and variance of Yij are

EYij = µ + τi, Var Yij = σ2
β + σ2

ε.



Statistical Design: RCB/Models [65]

Correlation

• Conditional on blocks

Cov(Yij, Yi′j′|βj, βj′) = Cov(εij, εi′j′) = 0

• Unconditionally

Cov(Yij, Yi′j) = Cov(βj+εij, βj+εi′j) = Cov(βj, βj) = σ2
β

◦ Positive covariance in the blocks

◦ A consequence of the model

• Unconditional (Intraclass) Correlation

Corr(Yij, Yi′j) =
Cov(Yij, Yi′j)

√

(Var Yij)(Var Yi′j)
=

σ2
β

σ2
β + σ2

ε
,



Statistical Design: RCB/Expected Squares and F -tests [66]

Expected Squares and F -tests

• EMS: one observation per treatment-block combination

• Cochran’s Theorem applies - equicorrelation

Source df EMS

Blocks b − 1 σ2
ε + tσ2

β

Treatments t − 1 σ2
ε + b

t−1

∑

i [τi]
2

TxB (t − 1)(b − 1) σ2
ε

• Test H0 : τi = 0 for all i with

MS(Trts)

MS(T × B)
∼ Ft−1,(b−1)(t−1).



Statistical Design: Randomized Block Designs/Estimating Contrasts [67]

Estimating Contrasts

• Use Least Squares Estimates

• Estimate
∑

i aiτi with
∑

i aiτ̂i where

E

(

∑

i

aiτ̂i

)

=
∑

i

aiτi and Var

(

∑

i

aiτ̂i

)

=
σ2

ε

b

∑

i

a2
i .

• Inference is Straightforward

• Note
σ2

ε = “Residual” = T × B

even if we don’t model it!



Statistical Design: Randomized Block Designs/Modelling the Interaction [68]

Modelling the Interaction

• Recall True vs. Technical Replication

(1) Technical Replication: if RNA from the same subject is
used in two different microarrays.

⊲ True replication would have RNA from different subjects
on each microarray.

(2) Technical Replication: In an block, if fertilizer is applied
to a subplot with 5 plants from the same line, clone, etc.,
then the 5 plants are a technical replication.

⊲ True Replication: In a block, if the treatment is applied
to the plot, and we have independent replicates.

⊲ True Replication: In a block, if the treatment is applied
to the plant, and we have independent replicates.

⊲ Conditional Independence



Statistical Design: Randomized Block Designs/Modelling the Interaction [69]

Modelling the Correlation

• True vs. Technical affects the correlation

• For k 6= k′, but in the same block,

Corr(εijk, εi′jk′) =

{

ρε for technical replication
0 for true replication

• A similar distinction is made by Gates (1995)



Statistical Design: Randomized Block Designs/Models [70]

Models

•Many extensions of “no-interaction” model

•We use Model II (Hocking 1973, 1985)

Yijk = µ + τi + βj + (τβ)ij + εijk,

i = 1, . . . , t, j = 1, . . . , b, k = 1, . . . , r,

◦ εijk ∼ N(0, σ2)

◦ Corr(εijk, εi′jk′) = ρε

◦ (τβ)11, . . . , (τβ)tb, ∼ N(0, σ2
τβ)

◦ Corr((τβ)ij, (τβ)i′j) = 0

◦ β1, . . . , βb, are iid N(0, σ2
β), independent



Statistical Design: Randomized Block Designs/Models [71]

Tests

• If ρε 6= 0,

◦ Can test treatments with T × B

◦ Cannot test T × B using Within

• Can only test T × B using Within if ρε = 0

• Also have Intraclass Correlation

Corr(Yijk, Yijk′) =
σ2

β + σ2
τβ + ρεσ

2
ε

σ2
β + σ2

τβ + σ2
ε

[inside T × B]

Corr(Yijk, Yi′jk′) =
σ2

β

σ2
β + σ2

τβ + σ2
ε

[inside B]



Statistical Design: Randomized Block Designs/Models [72]

EMS - RCB with Interaction

Source df EMS

Blocks b − 1 σ2
ε [1 + (r − 1)ρε] + rσ2

τβ[1 + (t − 1)ρτβ] + rtσ2
β

Treatments t − 1 σ2
ε [1 + (r − 1)ρε] + rσ2

τβ + rt
t−1

∑

i(τi − τ̄ )2

TxB (t − 1)(b − 1) σ2
ε [1 + (r − 1)ρε] + rσ2

τβ

Within bt(r − 1) (1 − ρε)σ
2
ε

• There is always a test for treatments

• Cannot Test Interaction Unless

◦ ρε = 0 True Replication



Statistical Design: Randomized Block Designs/Models [73]

Model II

• The standard Model II has all εijk independent

◦ This implies that ρε = 0

◦ But this cannot always be assumed

• Note that Cov(Ȳij·, Ȳi′j·) 6= 0

◦ Even if we assume ρε = 0

◦We always have intraclass correlation



Statistical Design: Randomized Block Designs/Models [74]

RCB - Treatment Design

• Three parental lines of Persea americana, or avocado

• Interest in treatment differences and env. interactions

◦ Trees cloned, planted in two locations

◦ Clones (Parents) are crossed with environment

Source df

Env 1

Parent 2

E x P 2

Genotype (in P) 9

G x E (in P) 9

Within 24

Total 47

◦ This is an RCB
◦ Trt. Design = Nested
◦ Tests?



Statistical Design: Randomized Block Designs/Models [75]

RCB - Treatment Design

Env 1 Env 2

P1

Genotype

1 2 3 4

x x x x

x x x x

Genotype

1 2 3 4

x x x x

x x x x

P2

Genotype

5 6 7 8

x x x x

x x x x

Genotype

5 6 7 8

x x x x

x x x x

P3

Genotype

9 10 11 12

x x x x

x x x x

Genotype

9 10 11 12

x x x x

x x x x

Source df

Env 1

Parent 2

E x P 2

Genotype (in P) 9

G x E (in P) 9

Within 24

Total 47

◦ Parent
E x P

◦ Genotype (in P)
G x E (in P)

◦ G x E (in P)
Within



Statistical Design: RCB/Variations on a Theme [76]

Variations on a Theme

• Some Variations of Blocking

◦ Replicating the Experiment

◦ Crossed Blocks

◦ Latin Squares



Statistical Design: RCB/ Replicating the Experiment [77]

Replicating the Experiment

• Replication by repeating the entire experiment

•Often good reasons to do so

◦ Agricultural - Replicate over Years

◦Microarray - Replicate over Labs

• Surprisingly, the valid tests are not what you may expect!



Statistical Design: RCB/ Replicating the Experiment [78]

Blocks Nested in Reps
Replications

1 2 · · · · · · · · · r

Block

Trt 1 · · · b

1 x · · · x
... ... ... ...

t x · · · x

Block

Trt 1 · · · b

1 x · · · x
... ... ... ...

t x · · · x

· · · · · · · · ·

Block

Trt 1 · · · b

1 x · · · x
... ... ... ...

t x · · · x

Source df SS MS

Location 2 3.119 1.559

Blocks(in Locations) 12 17.017 1.4181

Variety 4 4.516 1.129

Variety × Location 8 1.702 0.213

Variety × Block (in Location) 48 5.843 0.122

◦ Tests?
◦ Can we use the 48 df?



Statistical Design: RCB/ Replicating the Experiment [79]

Blocks Nested in Reps

Source df SS MS

Location 2 3.119 1.559

Blocks(in Locations) 12 17.017 1.4181

Variety 4 4.516 1.129

Variety × Location 8 1.702 0.213

Variety × Block (in Location) 48 5.843 0.122

Expected Mean Squares

Source df EMS

Replications r-1 σ2
ε + σ2

τβ + tσ2
β + bσ2

τR + btσ2
R

Blocks (in Reps) r(b-1) σ2
ε + σ2

τβ + tσ2
β

Treatments t-1 σ2
ε + σ2

τβ + bσ2
τR + rb

t−1

∑

i τ
2
i

Trt × Rep (t-1)(r-1) σ2
ε + σ2

τβ + bσ2
τR

Trt × Block (in Rep) r(t-1)(b-1) σ2
ε + σ2

τβ

Total btr-1

◦ Can’t use 48 df
◦ Without Assumptions

◦ Like σ2
τR = 0

◦ F = Trt
Trt × Rep

Similar result if
blocks crossed
with reps



Statistical Design: RCB/Crossed Blocks [80]

Crossed Blocks

Blocks B
1 2 · · · b

1

T

1 2 · · · t

x x · · · x

· · · · · ·
x x · · · x

T

1 2 · · · t

x x · · · x

· · · · · ·
x x · · · x

· · ·

T

1 2 · · · t

x x · · · x

· · · · · ·
x x · · · x

2

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

· · ·

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

Blocks

C
...

...
... · · · ...

g

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

· · ·

T

1 2 · · · t

x x · · · x
· · · · · ·
x x · · · x

◦ B and C are blocks

◦ T is randomized
on the intersection
of B and C

◦ Can account for
two gradients

◦ “Full Factorial”
Latin Square



Statistical Design: RCB/Crossed Blocks [81]

Crossed Blocks - The Bad News
Expected mean squares

Source df EMS

Blocks B b-1 σ2
ε + σ2

βτγ + tσ2
βγ + gσ2

τβ + tgσ2
β

Blocks C g-1 σ2
ε + σ2

βτγ + tσ2
βγ + rσ2

τγ + trσ2
γ

T t-1 σ2
ε + σ2

βτγ + gσ2
τβ + rσ2

τγ + rg
t−1

∑

i τ
2
i

Blocks B × T (b-1)(t-1) σ2
ε + σ2

βτγ + gσ2
τβ

Blocks C × T (g-1)(t-1) σ2
ε + σ2

βτγ + rσ2
τγ

Blocks B × Blocks C (b-1)(g-1) σ2
ε + σ2

βτγ + tσ2
βγ

Blocks B × Blocks C × T (b-1)(g-1)(t-1) σ2
ε + σ2

βτγ

Total bgt-1

• No Direct test on treatments

◦ Can assume either σ2
τγ = 0 or σ2

τβ = 0

◦ Satterthwaite approximation

• Can test T × Block interaction



Statistical Design: RCB/Latin Squares [82]

Latin Squares

• Crossed Blocks ⇒ Latin Squares

• Each Intersection has only one treatment

◦ Controls Two Gradients

◦ Each row contains exactly one level of each treatment

◦ Each column contains exactly one level of each treatment

• Now we see the assumptions needed for inference



Statistical Design: RCB/Latin Squares [83]

Latin Square Setup
Blocks B East-West

1 2 3 4

Blocks 1 T3 T1 T2 T4

C 2 T1 T2 T4 T3

North-South 3 T2 T4 T3 T1

4 T4 T3 T1 T2

Source df SS MS F p-value

Row 3 9.427 3.142

Column 3 245.912 81.971

Treatment 3 23.417 7.806 1.953 .223

Residuals 6 23.984 3.997

Total 15 302.74

• t Treatments ⇒ t Rows and t Columns - A Square!

• The “Residuals” are a soup of interactions



Statistical Design: RCB/Latin Squares [84]

Interpretation

Source df SS MS F p-value

Row 3 9.427 3.142

Column 3 245.912 81.971

Treatment 3 23.417 7.806 1.953 .223

Residuals 6 23.984 3.997

Total 15 302.74

Source df SS MS

Row 3 9.427 3.142

Column 3 245.912 81.971

Row × Column 9 47.401 5.267

Total 15 302.74

• SS(Treatments) is from the Row × Column effect

• Essential that there is no Row × Column effect

◦ The residual should only measure experimental error

◦Otherwise test is conservative (?)



Statistical Design: RCB/Latin Squares [85]

Latin Square Model

Yijk = µ + τi + βj + γk + εjk

• Index set a bit involved

•Only one i for each jk
Blocks B East-West

1 2 3 4

Blocks 1 τ3 + β1 + γ1 τ1 + β2 + γ1 τ2 + β3 + γ1 τ4 + β4 + γ1

C 2 τ1 + β1 + γ2 τ2 + β2 + γ2 τ4 + β3 + γ2 τ3 + β4 + γ2

North-South 3 τ2 + β1 + γ3 τ4 + β2 + γ3 τ3 + β3 + γ3 τ1 + β4 + γ3

4 τ4 + β1 + γ4 τ3 + β2 + γ4 τ1 + β3 + γ4 τ2 + β4 + γ4

• Notice that Block effects sum to zero (balanced)

• Treatment contrasts free of block effects



Statistical Design: RCB/Latin Squares [86]

Latin Square Contrasts

E

(

∑

i

aiȲi

)

=
∑

i

aiτi

Var

(

∑

i

aiȲi

)

=
σ2

ε

t

∑

i

a2
i

• σ2
ε is the residual term

• Estimated with MS(Residual) with (t − 2)(t − 1) df

◦ Latin Squares can be replicated to increase residual df

• Variation: Latin Rectangle.

◦ Rows crossed with Reps, Columns nested

◦ Similar analysis



Statistical Design: RCB/ [87]

Some Observations

Rows

Columns

T1

T2

T3

T4

T1

T2

T3

T4

X

X
X

X

X
X

X
X

X
X

X

X

X
X

X
X

Latin Square

Full Factorial

• An RCB if Rows or Columns ignored

• Here, only need 1/4 of the observations of full factorial
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More Observations
Columns

1 2 3 4 5

1 A B C D E

Rows 2 B C D E A

3 C D E A B

4 D E A B C

5 E A B C D

◦ Standard Square
◦ ABCDE = first row and column
◦ Can always use cyclic construction

• Randomization: Choose at random from all squares

• 12 3 × 3 squares, 576 4 × 4 squares, 161, 280 5 × 5 squares

◦ Listing becomes problematic

◦ In practice: Randomly permute rows and columns of standard square



Statistical Design: RCB/Some Final Notes [89]

RCD - Some Final Notes

• Cochran’s Theorem

◦Works here - Covariance Matrix is Equicorrelated

◦Details in Text

•Mixed Model Estimation

◦ Prediction of Block Effects

•Other Models

◦ Scheffé

• Variance Components

◦ REML



Statistical Design: RCB/Some Final Notes [90]

An Example
Revisiting the Alfalfa Experiment

• Four varieties of alfalfa, RCB with four blocks

• Response variable was yield, in tons of dry hay per acre

• For each Variety × Block cell there were three subsamples

• Anova table
Source df Sum Sq Mean Sq F p

Block 3 3.982 1.327

Variety 3 37.201 12.400 26.068 .000

Variety × Block 9 4.281 0.476 1.880 .092

Within 32 8.100 0.253
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An Example
Revisiting the Alfalfa Experiment - 2

Source df Sum Sq Mean Sq F p

Block 3 3.982 1.327

Variety 3 37.201 12.400 26.068 .000

Variety × Block 9 4.281 0.476 1.880 .092

Within 32 8.100 0.253

• Testing the interaction term is often of lesser interest.

• The existence of interaction is an academic question

• By their very nature, we cannot control blocks
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Other Designs
Revisiting the Alfalfa Experiment - 3

Eight Blocks

Source df

Block 7

Variety 3

V × B 21

Within 16

Twelve Blocks

Source df

Block 11

Variety 3

V × B 33

Within 0

• The 8 block anova is unbalanced in the cells.

• Better design uses 12 blocks; most df for the Variety test.

• The eight block design could be preferred if there concern
about interaction.

• The 4 block experiment is a waste of effort.



Statistical Design: Fixed Blocks [93]

Chapter 4:
Interlude: Assessing the Effects of Blocking

The first principle is that you must not fool yourself...

Richard P. Feynman
Surely You’re Joking, Mr. Feynman



Statistical Design: Fixed Blocks/Introduction [94]

Introduction

• Random Blocks ⇒ The levels selected are a random sample

• Puzzling: We almost never actually take a random sample

• In a sense the concept of a random factor is a fallacy

◦ And is often difficult to explain to students

• Important implication: Blocking induces a correlation

• This correlation can be modelled directly.

• So model a factor according to what it really is!



Statistical Design: Fixed Blocks/Introduction [95]

Fixed or Random?

◦ Five varieties of tomato plant
◦ Different levels of light
◦ Blocks = Area of Greenhouse

◦ Eighteen subjects
◦ Measure memorization
◦ Trt = level of distraction
◦ Blocks = Subjects

◦ Five elementary schools
◦ Three methods of teaching
◦ Measure scores on pre-post test
◦ Blocks = Schools

• Fixed

• Random

• Fixed



Statistical Design: Fixed Blocks/Models and Distribution [96]

Model and Inference

• Blocks are fixed or random ⇒ can affect some calculations

• The scope of the inference will be affected

◦ Inference can only go to the blocks used

•Model

Yij = µ+τi+βj+(τβ)ij+εij, i = 1, . . . , t, j = 1, . . . , b,

◦ εij ∼ N(0, σ2)

◦ Corr(εij, εi′j′) =

{

ρ if j = j′, i 6= i′

0 otherwise



Statistical Design: Fixed Blocks/Modelling the Interaction [97]

Expected Mean Squares

EMS for RCB anova with fixed blocks and replication

Source df EMS

Blocks b − 1 σ2 [1 + (r − 1)ρε + r(t − 1)ρB] + rt
b−1

∑

j β2
j

Treatments t − 1 σ2[1 − rρB + (r − 1)ρε] + br
t−1

∑

i τ
2
i

TxB (t − 1)(b − 1) σ2[1 − rρB + (r − 1)ρε] + r
(b−1)(t−1)

∑

ij(τβ)2ij

Within bt(r − 1) (1 − ρε)σ
2

• Can always test treatments

• Interaction test problematic even with true replication



Statistical Design: Fixed Blocks/Modelling the Interaction [98]

Remarks

• There are implicit identities in random blocks model

• Cannot happen with Fixed Blocks

◦ Can test H0 : (τβ)ij = 0 if ρε = 0

• In the end, fixed or random blocks is really not our choice

◦ Reality of the experiment

◦ Scope of inference

• The correlation not necessarily restricted to be positive, as
in random blocking.



Statistical Design: Split Plot Designs [99]

Chapter 5: Split Plot Designs

“How absurdly simple!”, I cried.

“Quite so!”, said he, a little nettled. “Every problem

becomes very childish when once it is explained to you.”

Dr. Watson and Sherlock Holmes
The Adventure of the Dancing Men



Statistical Design: Split Plot Designs/Introduction [100]

Introduction

• The workhorse of statistical design

• If the only tool you own is a hammer, then everything in
the world looks like a nail

◦ From now on, you will see the split plot in almost every
design that you encounter

• A split plot design (or split unit design) is one in which
there is more than one type of experimental unit.



Statistical Design: Split Plot Designs/Introduction [101]

A Split Plot Example

• Study of dietary composition on health

◦ Four diets were randomly assigned to 12 subjects

◦ Blood pressure was measured morning and evening

Diet

1 2 3 4

Subject Subject Subject Subject

1 2 3 4 5 6 7 8 9 10 11 12

Morning x x x x x x x x x x x x

Evening x x x x x x x x x x x x

• There are 12 subjects (EU) but there are 24 numbers

• The experimental unit is split



Statistical Design: Split Plot Designs/Introduction [102]

Split Plot Anova
Source df

Diets 3

Subjects (in Diets) 8

Time 1

Time × Diet 3

Time × Subjects (in Diets) 8

Total 23

◦ Whole Plots above the line

◦ Split Plots below the line

• The split plot design is an experiment design

• An implied correlation structure

• The whole plots act as blocks for the split plot treatment

• Comparisons “below the line” have greater precision.

◦ Put the important stuff here! (If possible)



Statistical Design: Split Plot Designs/CRD on the Whole Plots [103]

CRD on the Whole Plots

The split plot model, with whole plot treatments in a CRD,

Yijk = µ + τi + εij + γk + (τγ)ik + δijk

◦ εij = whole plot error, εij
iid∼ N (0, σ2

ε)

◦ δijk = split plot error,
iid∼ N (0, σ2

δ), independent of εij.

Data Layout for Split Plot Design

T
1 2 · · · t

Rep
1 2 · · · r

1
G 2

...
g

x
x
...
x

x
x
...
x

· · ·

x
x
...
x

· · ·

Rep
1 2 · · · r

1
G 2

...
g

x
x
...
x

x
x
...
x

· · ·

x
x
...
x



Statistical Design: Split Plot Designs/CRD on the Whole Plots [104]

Model Consequences

• The whole plot analysis is based only on the ȳij

◦ Can be done in ignorance of what goes on below the line

◦ The ȳij are independent

• There is correlation below the line

Corr(Yijk, Yijk′) =
σ2

ε

σ2
ε + σ2

δ

.

◦ Equicorrelation

• The split plot error is a pooled interaction term



Statistical Design: Split Plot Designs/CRD on the Whole Plots [105]

EMS and F -tests

• Estimation and testing is, for the most part, straightforward

EMS for a split plot design, whole plots in a CRD

Source df EMS

Whole Plot Trt t-1 σ2
δ + gσ2

ε + rg
t−1

∑

i τ
2
i

Replication (in Whole Plots) t(r-1) σ2
δ + gσ2

ε

Split Plot Trt g-1 σ2
δ + rt

g−1

∑

k γ2
k

Split Plot Trt × Whole Plot Trt (g-1)(t-1) σ2
δ + r

(g−1)(t−1)

∑

ik(τγ)2ik
Split Plot Trt × Replication (in Whole Plots) t(g-1)(r-1) σ2

δ

Total grt-1

• Here the tests are clear

• Cochran’s Theorem Applies



Statistical Design: Split Plot Designs/CRD on the Whole Plots [106]

Estimating Contrasts

There are four types of contrasts to consider:

•Whole Plot Means:
∑

i aiτi, where
∑

i ai = 0

• Split Plot Means:
∑

k akγk, where
∑

k ak = 0

• Interaction Means, Same Level of Whole Plot:
∑

k ak(τγ)ik, where
∑

k ak = 0

• Interaction Means, Different Whole Plot Level:
∑

ik aik(τγ)ik, where
∑

ik aik = 0



Statistical Design: Split Plot Designs/CRD on the Whole Plots [107]

Estimating Contrasts

Whole Plot Means Var(
∑

i aiȲi) =
(

σ2
ε
r +

σ2
δ

rg

)

∑

i a
2
i

Split Plot Means Var
(
∑

k akȲk

)

=
σ2

δ
tr

∑

k a2
k

Interaction Means, Var
(
∑

k akȲik

)

=
σ2

δ
r

∑

k a2
k

Same Whole Plot

Interaction Means, Var
(
∑

ik aikȲik

)

=
σ2

δ
r

∑

ik a2
ik + σ2

ε
r

∑

i (
∑

k aik)
2

Different Whole Plot

◦
∑

k aik = 0 if SP comparisons are balanced



Statistical Design: Split Plot Designs/CRD on the Whole Plots [108]

Dietary Split Plot Example

Source df SS MS F p-value

Diet 3 1873.46 624.49 85.16 < .0001

Subject(in Diet) 8 58.667 7.333

Time 1 1190.04 1190.04 73.6108 < .0001

Diet × Time 3 53.13 17.71 1.095 0.405

Split Plot Error 8 129.33 16.17

Time

AM PM

1 121.67 133.33

Diet 2 121.33 139.00

3 112.67 129.00

4 139.67 150.33

Same WP Within WP Between WP Interaction

AM PM

1 1 -1

2 0 0

3 0 0

4 0 0

AM PM

1 1 -1

2 1 -1

3 0 0

4 0 0

AM PM

1 1 0

2 -1 0

3 0 0

4 0 0

AM PM

1 1 -1

2 -1 1

3 0 0

4 0 0



Statistical Design: Split Plot Designs/CRD on the Whole Plots [109]

Dietary Split Plot Example

Same WP Within WP Between WP Interaction
AM PM

1 1 -1
2 0 0

3 0 0
4 0 0

Case (3)

AM PM

1 1 -1
2 1 -1

3 0 0
4 0 0

Case (3)

AM PM

1 1 0
2 -1 0

3 0 0
4 0 0

Case (4)

AM PM

1 1 -1
2 -1 1

3 0 0
4 0 0

Case (3)

• First two contrasts: SP Trt. within levels of the WP Trt.

◦We have
∑

k aik = 0, so we are in Case (3)

• Third contrast: Cell means from different whole plots

◦We have
∑

k aik 6= 0, so we are in Case (4)

• Fourth contrast is an interaction of cell means

◦We have
∑

k aik = 0, so we are back in Case (3)



Statistical Design: Split Plot Designs/RCB on the Whole Plots [110]

RCB on the Whole Plots

•We have seen SP designs with a CRD on the WP Trts.

• There is no restriction to the whole plot treatment design.

◦ A more popular setup is to have the whole plots in an RCB

◦ This does not change computations and inference too much

◦ But does have an interesting effect on the SP error terms



Statistical Design: Split Plot Designs/RCB on the Whole Plots [111]

Variety Split Plot

• A classic split plot done at the Cornell Experiment Station

• Compare alfalfa varieties response to fertilizer treatments

◦Whole plots are in an RCB

◦ Split plots are completely randomized in whole plots

Field layout for split plot experiment

pK

N R A G O K

PK

G O A N R K

Pk

O N G R K A

pk

G K A O R N
Rep 1

PK

G O A K R N

pK

R K N G A O

pk

A R N G K O

Pk

O K A G N R
Rep 2



Statistical Design: Split Plot Designs/RCB on the Whole Plots [112]

Model and Distribution Assumptions

A model is

Yijk = µ + τi + βj + εij + γk + (τγ)ik + (βγ)jk + δijk,

where i = 1, . . . , t, j = 1, . . . , r, k = 1, . . . , g.

◦ βj = whole plot block
iid∼ N (0, σ2

β)

◦ εij = whole plot error, εij
iid∼ N (0, σ2

ε)

◦ (βγ)ik = block-treatment interaction
iid∼ N (0, σ2

βγ)

◦ δijk = split plot error,
iid∼ N (0, σ2

δ)

•We assume that all error terms are independent



Statistical Design: Split Plot Designs/RCB on the Whole Plots [113]

Model Consequences

• Block structure ⇒ two new random effects.

• This results in a more complicated split plot error term

• Note that the εij is the Block × Treatment interaction

• The correlation structure a bit more complicated

◦ If j 6= j′, Corr(Yijk, Yi′j′k′) = 0 (blocks independent)

◦Otherwise
Same WP Different WP

Same SP - σ2
β + σ2

βγ

Different SP σ2
β + σ2

ε σ2
β



Statistical Design: Split Plot Designs/RCB on the Whole Plots [114]

Data Layout and Anova
Replication (Blocks)

1 2 · · · r

T
1 2 · · · t

1
G 2

...
g

x
x
...
x

x
x
...
x

· · ·

x
x
...
x

· · ·

T
1 2 · · · t

1
G 2

...
g

x
x
...
x

x
x
...
x

· · ·

x
x
...
x

Source df SS MS F p-value

Rep 1 6.961 6.961

Trt 3 14.775 4.925 19.811 0.018

Trt × Rep 3 0.746 0.2486

Variety 5 2.071 0.414 .414
0.369 = 1.122 .451

Trt × Variety 15 1.526 0.102 .102
.104

= .977 0.518

Variety × Rep 5 1.849 0.369

Trt × Variety × Rep 15 1.562 0.104

• Note the two
error terms
below the line



Statistical Design: Split Plot Designs/RCB on the Whole Plots [115]

EMS and Errors
EMS for RCB Split Plot

Source df EMS

Blocks b-1 σ2
δ + gσ2

ε + tσ2
βγ + gtσ2

β

Whole Plot Trt t-1 σ2
δ + gσ2

ε + bg
t−1

∑

i τ
2
i

Blocks × WP Trts (b-1)(t-1) σ2
δ + gσ2

ε

Split Plot Trt g-1 σ2
δ + tσ2

βγ + bt
g−1

∑

k γ2
k

Split Plot Trt × Whole Plot Trt (g-1)(t-1) σ2
δ + b

(g−1)(t−1)

∑

ik(τγ)2
ik

Blocks × SP Trt (b-1)(g-1) σ2
δ + tσ2

βγ

Blocks × SP Trt × WP Trts (b-1)(g-1)(t-1) σ2
δ

Total bgt-1

• The presence of σ2
βγ ⇒ two error terms below the line.

• Pooling these errors assumes σ2
βγ = 0

◦ Reasonable if whole plots randomly assigned to split plots

◦ Pooling into “Split Plot Error” is conservative



Statistical Design: Split Plot Designs/RCB on the Whole Plots [116]

Estimating Contrasts

Whole Plot Means Var(
∑

i aiȲi) =
σ2

δ+gσ2
ε

bg

∑

i a
2
i

Split Plot Means Var
(
∑

k akȲk

)

=
σ2

δ+tσ2
βγ

bt

∑

k a2
k

Interaction Means, Var
(
∑

k akȲik

)

=
σ2

δ+σ2
βγ

b

∑

k a2
k

Same Whole Plot

Interaction Means, Var
(
∑

ik aikȲik

)

=
σ2
δ
b

∑

ik a2
ik +

σ2
βγ

b

∑

k (
∑

i aik)
2 + σ2

ε
b

∑

i (
∑

k aik)
2

Different Whole Plot

• No obvious estimate of σ2
δ + σ2

βγ

• Last expression can be nasty



Statistical Design: Split Plot Designs/Microarrays [117]

One Last Split Plot

• Affymetrix oligonucleotide microarrays

◦ Single-dye system

• The experimental unit is the RNA

◦On the chip are the genes

◦ Here we split the EU - get expression level of all genes

• The genes are a split plot treatment

• The WP treatments (chips) can have different designs

◦ CRD, RCB, or something else.



Statistical Design: Split Plot Designs/Microarrays [118]

Microarray Split Plot

•With a oneway CRD for the whole plots, a model is

yijk = µ + Ti + Aij + Gk + (GT )ik + εijk,

• The anova is
Source df

Treatments t-1

Whole Plot Error t(r-1)

Genes g-1

Gene × Treatment (t-1)(g-1)

Split Plot Error t(g-1)(r-1)

•Microarrays must be replicated - otherwise no tests!

◦ Interest in G and G × T

◦ This test is at the split-plot level, and is more precise.



Statistical Design: Split Plot Designs/Splitting Twice [119]

Splitting Twice

• SP design ⇒ SP Trt is randomized to levels of the WP Trt

•We can continue, creating a split split plot design.

◦ The splits should be dictated by the physical constraints,
and perhaps the desire for greater accuracy in the mea-
surement of a particular treatment.

◦We’ll be less formal here, looking at some examples.

◦Of course, we could split more than twice and, for ex-
ample, have a split split split plot design.

◦We will look the CRD. RCB split split is nastier.



Statistical Design: Split Plot Designs/Splitting Twice [120]

Ozone Chamber Split Split

• Test the effect of ozone gas on plants

• Two environmental chambers for each of four ozone levels

◦ Six varieties of plants were placed in each chamber

◦Data from two locations/plant - root (R) and top (T)

Ozone Level
1 · · · · · · 4

Chamber

1 2

Loc.

R T
1 x x

2 x x
Var. 3 x x

4 x x

5 x x
6 x x

Loc.

R T
1 x x

2 x x
Var. 3 x x

4 x x

5 x x
6 x x

· · · · · ·

Chamber

7 8

Loc.

R T
1 x x

2 x x
Var. 3 x x

4 x x

5 x x
6 x x

Loc.

R T
1 x x

2 x x
Var. 3 x x

4 x x

5 x x
6 x x



Statistical Design: Split Plot Designs/Splitting Twice [121]

Ozone Chamber Split Split
Source df

Ozone 3

Whole Plot Error (Chambers in Ozone) 4

Variety 5

V × O 15

Split Plot Error (V × C in O) 20

Location 1

L × V 5

L × O 3

L × V × O 15

Split Split Plot Error (L × C in V × O) 24

Total 95

◦ The treatments (L, V, O)
are crossed.

◦ The random factor Chambers
is nested in WP

◦ WP and SP errors are
the same as before

•WP error comes from the replication of the WP treatments

• SP errors come from the respective interactions

• SSP error is the L × random factor C, nested in V × O.



Statistical Design: Split Plot Designs/Splitting Twice [122]

Randomization Patterns

• Three crossed factors,
A, B, and C,
each at three levels

• CRD, SP, and SSP

• Possible randomization
of the first nine
observations.

A
1 2 3

B B B
1 2 3 1 2 3 1 2 3

1 3 5 4

C 2 8 1 7 9 CRD

3 2 6

1 4 9 7

C 2 1 6 5 A=Whole Plots

B × C = Split Plots
3 8 2 3

1 4 7 1

C 2 6 9 3
A=Whole Plots
B = Split Plots

C = Split Split Plots
3 5 8 2



Statistical Design: Split Plot Designs/Variations on a Theme [123]

Variations on a Theme

•We briefly look at three variations of the split plot design

• The strip plot design

◦ Reflects a specific type of randomization

• The crossover design

◦ A useful variation of the SP

◦More common in experiments using human subjects.

• The repeated measures design

◦ Brings in a new error structure



Statistical Design: Split Plot Designs/Variations on a Theme [124]

Strip Plot Designs

• Effect of potassium and phosphorus on yield of sugarcane.

• Use farm-scale equipment to apply the chemicals

Field Layout and Yield

Block

I II III

K3 K1 K2 K1 K3 K2 K2 K1 K3

P1 56 32 49 38 62 50 63 54 68

P2 67 54 58 52 72 64 54 44 51

Source df

Blocks 2

K 2

K x B 4

P 1

P x B 2

K x P 2

K x P x B 4

Total 17

• Potassium(K) randomized→ Phosphorus(P) randomized↓

• Not a Split Plot - Treatments are Equal



Statistical Design: Split Plot Designs/Variations on a Theme [125]

Strip Plot Designs

• The strip plot design actually has
three experimental units

• Each treatment and interaction
applied to distinct EU

◦ Correlation is different for the treatments
and interaction,

◦ Higher correlation in the interaction

Block

Exp. Unit for T

Exp. Unit for T x G

Exp. Unit for G



Statistical Design: Split Plot Designs/Variations on a Theme [126]

Strip Plot Bioassay

• Strip plot designs were originally developed to accommo-
date treatments applied with farm-scale equipment

• They are still relevant today!

◦ Cells grown in culture are often sensitive to subtle fea-
tures in the environment, and may grow better on one
side of the plate than another.

◦ If a design such as a CRD is used, we must use ran-
domization to control this variation and avoid grouped
dilution or serial dilution

◦ This can be better handled in a strip plot design



Statistical Design: Split Plot Designs/Variations on a Theme [127]

Strip Plot Bioassay

• Samples (dilutions) treated together with multichannel pipettes

• Solution placed simultaneously across row or down column

dub2     

one2     

hlf2     

dub1     

one1     

hlf1     

ref2     

ref1     

H

G

F

E

D

C

B

A

1 2 3 4 5 6 7 8 9 10 11 12

1.21

1.34

1.22

1.27

1.37

1.24

1.27

1.28

1.27

1.33

1.35

1.38

1.45

1.35

1.38

1.20

2.14

2.35

2.21

2.25

2.36

2.18

2.42

2.02

2.20

2.32

2.16

2.41

2.26

2.36

2.22

1.93

1.44

1.41

1.36

1.38

1.44

1.35

1.43

1.35

2.07

2.24

2.02

2.06

1.90

2.04

1.93

1.89

2.03

1.88

1.72

2.18

1.73

1.85

1.88

1.32

1.28

1.30

1.21

1.30

1.23

1.34

1.26

1.31

1.40

1.36

1.32

1.42

1.31

1.37

1.32

2.09

2.43

2.08

2.06

2.26

2.11

2.11

1.93

1.50

1.73

1.56

1.38

1.81

1.46

1.49

1.44

1.59

1.75

1.58

1.52

1.62

1.45

1.48

1.51

2.38

 : block C ◦ Field Layout- 96-well plate

◦ Four Samples
- reference, 1/2, 1, 2

◦ Twelve Dilutions



Statistical Design: Split Plot Designs/Variations on a Theme [128]

Strip Plot Bioassay Anova

dub2     

one2     

hlf2     

dub1     

one1     

hlf1     

ref2     

ref1     

H

G

F

E

D

C

B

A

1 2 3 4 5 6 7 8 9 10 11 12

1.21

1.34

1.22

1.27

1.37

1.24

1.27

1.28

1.27

1.33

1.35

1.38

1.45

1.35

1.38

1.20

2.14

2.35

2.21

2.25

2.36

2.18

2.42

2.02

2.20

2.32

2.16

2.41

2.26

2.36

2.22

1.93

1.44

1.41

1.36

1.38

1.44

1.35

1.43

1.35

2.07

2.24

2.02

2.06

1.90

2.04

1.93

1.89

2.03

1.88

1.72

2.18

1.73

1.85

1.88

1.32

1.28

1.30

1.21

1.30

1.23

1.34

1.26

1.31

1.40

1.36

1.32

1.42

1.31

1.37

1.32

2.09

2.43

2.08

2.06

2.26

2.11

2.11

1.93

1.50

1.73

1.56

1.38

1.81

1.46

1.49

1.44

1.59

1.75

1.58

1.52

1.62

1.45

1.48

1.51

2.38

 : block C

◦ Rows are nested in samples
but crossed with blocks

Source df

Blocks 2

Dilutions (Columns) 11

D × B 22

Rows 7

Samples 3

Rows(in Samples) 4

Rows × Blocks 14

S × B 6

Rows(in Samples) × B 8

D × Rows 77

D × S 33

D × Rows(in Samples) 44

D × Rows × B 154

D × S× B 66

D × Rows(in Samples)× B 88

Total 287



Statistical Design: Split Plot Designs/Variations on a Theme [129]

Crossover Designs

• The crossover design combines a bit of everything

◦ RCB, Strip Plot, Latin Square

◦ Gives tighter control on differences

◦ Cost is an assumption on order of treatments

• Simplest Case is Two Period (P1, P2) Crossover (SCOD)

◦ Two Groups (G1, G2) and Two Treatments (T1, T2)

◦Data Layout:

G1 G2

P1 T1 T2

P2 T2 T1

or

T1 T2

P1 G1 G2

P2 G2 G1



Statistical Design: Split Plot Designs/Variations on a Theme [130]

Simple Crossover

• The groups are “crossed over” to the other treatment

◦ Each group receives both treatments, in opposite orders.

◦ Each group is its own control

◦We save observations, but get good comparisons

◦What did we give up??

• There is a Washout Period between treatments

◦ Assumption of “No Carryover”

◦ Assume that groups start P2 equivalent to starting P1

◦ This is an assumption about interactions



Statistical Design: Split Plot Designs/Variations on a Theme [131]

The SCOD is a Split Plot

• Plots=Subjects

•WP Trt = Order, SP Trt = Treatment
Source df

Order 1

Subjects (in Order) s-2

Period 1

P × O (Treatments) 1

P × Subjects (in Order) s-2

• Treatment test confounded with P × O interaction

• To test treatments, need to assume no P × O interaction
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The SCOD is a Split Plot - 2

• The test on order (WP level) is testing the carryover effect.

• Both groups receive both treatments

◦Only difference is the order of treatments

◦ Nonsignificance means equal carryover, not no carryover!

Source df

Order 1

Subjects (in Order) s-2

Period 1

P × O (Treatments) 1

P × Subjects (in Order) s-2

• Without Order Effect
T1 vs. T2

• With Order Effect
T1 after T2
T2 after T1

• All of the tests in the SCOD are t-tests
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Exercise Crossover Design

• Effects of aerobic exercise on riboflavin requirements

• 12 subjects, NE/E or E/NE, where NE=no exercise, E=exercise

Order Subject UrRibo Order Subject UrRibo

NE 1 29.5 E 7 14.0

Period 1 ... ... ... ...

6 20.4 12 15.0

E 1 31.6 NE 7 26.3

Period 2 ... ... ... ...

6 11.3 12 27.8

Source df p-value

Order 1 0.250

Subjects (in Order) 10

Period 1 0.813

Period × Order (Trt) 1 0.004

Split Plot Error 10

• Significant Treatment Effect

• If no Period × Order interaction
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Three Period Crossover

• Crossover design starts to get unwieldy here

• Beyond three treatments is probably not a good idea

◦Multiple washout periods

◦ Assumption of no carryover effect becomes tenuous

• A Possible Layout

Subjects

1 2 3 4 5 6

1 a b c c a b

Period 2 b c a b c a

3 c a b a b c

• Note the two orthogonal Latin squares
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Three Period Crossover Anova

Subjects

1 2 3 4 5 6

1 a b c c a b

Period 2 b c a b c a
3 c a b a b c

Source df SS

Order 5 6252.4

Period 2 1053.8

Period × Order 10 13056.2

Drug 2 2276.8

Residual 8 10779.4

• Treatment is now only a piece of the P × O interaction

• Subjects and Order are completely confounded here

◦ The design is, in fact, an RCB and not a split plot
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Repeated Measures

• Typically multiple measurements on a subject over time

• If Treatment is applied to the Subjects

◦ Subjects = Whole Plots, Time = SP Trt

• Blood Pressure response to High/Low Ca Diets

Treatment Subject Time

1 2 3

1 133 141 100

HighCa ... ... ... ...

5 171 142 128

6 104 139 153

LowCa ... ... ... ...

10 147 167 157

Source df MS p-value

Treatment 1 1153.2 0.2418

Whole Plot Error 8 721.6

Time 2 171.6

Trt × Time 2 2514.1

Split Plot Error 16 110.7
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Repeated Measures Anova

• Equicorrelation less tenable

• Plausible correlation

Corr(Yijk, Yijk′) = ρ|k−k′|

• Invalid SP F -tests

Source df MS p-value

Treatment 1 1153.2 0.2418

Whole Plot Error 8 721.6

Time 2 171.6

Trt × Time 2 2514.1

Split Plot Error 16 110.7

Some Options

•We can use an approximate F -test.

◦ Such tests are usually conservative

• Hotelling’s T 2 is valid test against any covariance structure.

◦ Typically a substantial loss of power

• The repeated measures can be summarized
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Summarizing the Repeated Measure

• Suppose the interest is in the change in BP over time

• Fit a linear regression to each subject

◦ Use the slope as the response

•Does not assume linear response, just summarizes the trend

Slopes for each subject

HighCa LowCa

1 2 · · · 5 6 7 · · · 10

-16.5 -14.0 · · · -21.5 24.5 25.5 · · · 5.0

Source df MS F p-value

Treatments 1 2512.23 41.619 0.0002

Within 8 60.36

• Valid anova - the subjects are independent, good power

• The anova on the slopes is very significant



Statistical Design: Split Plot Designs/Variations on a Theme [139]

An Example
Medical Split Plot

• Comparing the performance of a new type of catheter to
the standard type

• The response to be measured is the pressure inside the
catheter

• Sensors placed at two points along the catheter, Distal and
Proximate.

• For each patient the measurements were to be taken at
two organ ducts
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An Example
Medical Split Plot - 2

For each patient

Sensor Location
Distal Proximate

Organ Duct
Catheter

Type

Organ Duct
Catheter

Type

• The treatment design is a 2 × 2 × 2 factorial

◦ 30 patients available

◦ Each patient will have these 8 pressure measurements taken
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Randomization
Medical Split Plot - 3

• There are a number of ways to carry out the randomization

• Here are three:

(1) Randomize throughout the 2 × 2 × 2 factorial.

(2) Choose an organ duct, then randomize throughout Catheter
× Sensor combinations.

(3) Choose a catheter type, randomize the organs within catheter,
then randomize sensor in organ.
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Designs
Medical Split Plot - 4

Let O denote Organ, C the Catheter, S the Sensor and P the patient.

• (1): Randomize throughout treatments, P = blocks.

◦ RCB design.

• (2): Randomize throughout C × S in O, P = blocks.

◦ Split plot design, whole plots in RCB

◦O = WP trt ◦ C × S = split plot trt

• (3): Randomize C, then O in C, then S in O , P = blocks.

◦ Split split plot design, whole plots in RCB

◦C = WP trt ◦ O = SP trt ◦ S = SSP trt.
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Medical Split Plot - RCB

• Design (1) is an RCB

• Treatment effects are
tested against their
interaction with blocks

• With 30 blocks
there is no need
for pooling
interaction terms.

Source df

P 29

O 1

C 1

S 1

O × C 1

O × S 1

C × S 1

O × C × S 1

P × O 29

P × C 29

P × S 29

P × O × C 29

P × O × S 29

P × C × S 29

P × O × C × S 29
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Medical Split Plot - SP

• Design (2) is split plot,
whole plot treatment
in blocks P

• Above the line O is
tested against P × O.

• Below the line each
effect is tested against
its interaction with P

• Again, with 30 blocks
there is no need
to pool interactions.

Source df

P 29

O 1

P × O 29

C 1

S 1

C × S 1

C × O 1

S × O 1

C × S × O 1

P × C 29

P × S 29

P × C × S 29

P × C × O 29

P × S × O 29

P × C × S × O 29
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Medical Split Plot - SSP

• Design (3) is a
split split plot
whole plot in blocks P .

• As before,
everything is tested against
its interaction with P .

Source df

P 29

C 1

P × C 29

O 1

O × C 1

O × P 29

O × C × P 29

S 1

S × C 1

S × O 1

S × O × C 1

S × P 29

S × C × P 29

S × O × P 29

S × O × C × P 29
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Medical Split Plot - Conclusions

a. Design (1) - RCB

⊲ If interest in all treatments equal

b. Design (2) - SP

⊲ Better information on C and S

c. Design (3) - SSP

⊲ Good information on C, better information on S

◮ Need to also consider physical limitations

⊲ Some randomizations may not be feasible
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Chapter 6: Confounding in Blocks

It is easy to conduct an experiment in such a way that

no useful inferences can be made...

William Cochran and Gertrude Cox
Experimental Designs
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Introduction

• Thus far, we have only looked at complete designs

◦ Every treatment has appeared in every block.

• This is the best situation, and gives the best information
for treatment comparisons.

◦ In many situations we cannot put every treatment in
every block

◦Often due to time, money, or physical constraints of the
experiment

◦ For example, a microarray two-dye chip is restricted to
two treatments per block.

• In these cases the design becomes incomplete, and there
is confounding
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Problems from Incomplete Designs

• Treatment comparisons are confounded with block effects

◦ Block differences may affect treatment comparisons

◦ Block variances could inflate treatment variance

• Example: Effects of diet on BP in African-American males

A = amount of fruits and vegetables in the diet (low/high)
B = amount of fat in the diet (low/high)
C = amount of dairy products in the diet (low/high)

• Eight Treatment Combinations, 23 factorial

◦Only four treatment combinations can be run at one time

◦ The experiment will be run in two blocks
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Confounding in Blocks
Block

1 2

a b

c abc

(1) ab

ac bc

• Notation: Present/Absent

Effect
Block Trt. Comb A B C AB AC BC ABC

1 a + - - - - + +
1 b - + - - + - +
1 c - - + + - - +
1 abc + + + + + + +
2 (1) - - - + + + -
2 ab + + - + - - -
2 ac + - + - + - -
2 bc - + + - - + -

• ABC confounded with blocks
• Block 1 = high, Block 2 = low
• Other effects balanced between blocks
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Confounding in Blocks -2

• Any Effect can be confounded with blocks

Block

1 2

(1) a

bc abc

b c

ab ac

• BC confounded with Blocks

• If we run both blocks

◦ Partial information on BC and ABC

• If we confound all effects

◦ Need 14 blocks

◦ BIBD
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Balancing the whole thing

Block Pair Confounded Effect

a ab ac abc

(1) b c bc
A

b ab bc abc ∗

(1) a c ac ∗
B

c ac bc abc ∗

(1) a b ab ∗
C

Block Pair Confounded Effect

a b ac bc

(1) c ab abc
AB

a c ab bc

(1) b ac abc
AC

b c ab ac ∗

(1) a bc abc ∗
BC

a b c abc

(1) ab ac bc
ABC

• If Block Pairs Joined ⇒ RCB

• Partial Information on Block Interactions

◦ A × Block only from ∗
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Anova for the whole thing
A × Block Interaction

b ab bc abc ∗

(1) a c ac ∗
B

c ac bc abc ∗

(1) a b ab ∗
C

b c ab ac ∗

(1) a bc abc ∗
BC

Source df
Blocks 13
Trts 7
Trts × Blocks 7 × 5 = 35
Total 55

• Each Interaction Effect Estimated from Six Blocks

• RCB: 7 df shifted from Blocks to T × B

• This is a BIBD
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Balanced Incomplete Blocks

• Properties of a BIBD

◦ Every treatment is estimated with the same variance

◦ Every contrast is estimated with the same variance.

◦ Contrast variance is free of the block variance

• A BIBD with t treatments and b blocks satisfies:

◦ Each block has k treatments (k < t),

◦ Each treatment appears in r blocks (r < b)

◦ Every pair of treatments appears together λ times
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BIBD Illustrations

• The BIBD is characterized by the five numbers (t, k, b, r, λ)

Block
1 2 3 4

A A A B
B B C C
C D D D

• t = 4, k = 3, b = 4, r = 3, λ = 2

• BIBD Defining Equations

◦ rt = bk

◦ λ(t − 1) = r(k − 1)

•Derived by counting EUs
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Model and Distribution Assumptions

• BIBD model is essentially equivalent to the RCB model

Yij = µ + τi + βj + εij,

◦ εij ∼ iid N(0, σ2
ε), βj ∼ iid N(0, σ2

β) independent

◦ The difference is in the index set
Source df SS MS F

Blocks b-1 SS(Blocks) MS(Blocks)

Treatments t-1 SS(Trts) MS(Trts) MS(Trts)

MS(T × B)

T × B bk-b-t+1 SS(T × B) MS(T × B)

Total bk-1 SS(Total)

• Test on treatments is the same as in the RCB

• MS(T × B) is an unbiased estimator of σ2
ε
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Estimating Contrasts

• The least squares estimates of τi are

τ̂i =
k

λt



rȳi −
∑

j∈Ji

ȳj





• and, as they are least squares, unbiased estimators of τi.

• Treatment variances are free of block variances

Var(τ̂i) =
k

λt

(

t − 1

t

)

σ2
ε,

◦ The real advantage of the BIBD

◦ Note the important role played by λ
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A Sad Example

• Project to relate gene expression genes to substantiality of
crops (potatoes)

• Two crossed factors

◦ Photoperiod (P) and bioactive Tuber Inducing Factor
(TIF)

◦ Each factor at two levels (2=high and 1=low)

• Using an Agilent microarray chip, a two-dye system.

◦ Two treatments can be applied to each array

• Experimenter ran his own experiment
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All Four Pairs
• Experiment that was done - The Case of the Missing Pairs!

Effect

Array Trt. Comb P T PT Confounded

1 (1) - - + T

p + - -

2 p + - - P

pt + + +

3 (1) - - + P

t - + -

4 (1) - - + PT

pt + + +

•Damage Control

• Treatment contrasts not free of block effects

◦Design not balanced

◦ Hard to separate treatment effects
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All Six Pairs

• Experiment that should have been done

• BIBD: t = 4, k = 2 ⇒ r = 3, b = 6, λ = 1

Effect

Array Trt. Comb P T PT Confounded

1 (1) - - + T

p + - -

2 p + - - P

pt + + +

3 (1) - - + P

t - + -

4 (1) - - + PT

pt + + +

5 p + - - PT

t - + -

6 t - + - T

pt + + +
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Fractions of Factorials

• BIBD cycles and confounds each effect with blocks

◦ In the end, we can recover information about each effect

• If we run only a piece of the design, however, some effects
will not be estimable

◦ There will be a loss of information

◦ Some effects will be confounded

◦ This is the idea behind Fractional Factorial Designs.

• The key is to understand the confounding, so that the im-
portant information is not lost
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A simple fractional factorial

a ab ac abc

• 1/2 replication of a 23 factorial
• Not a particularly good design
• No good information on main effects

• Better for B: (1) b ac abc
• Here B ∼ ABC

Effect

Trt. Comb A B C AB AC BC ABC

a + - - - - + +

ab + + - + - - -

ac + - + - + - -

abc + + + + + + +

A ∼ Blocks
B ∼ AB
C ∼ AC
BC ∼ ABC• Subject matter ⇒ what can be confounded

• Careful planning needed for appropriate inference

• No within error here
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Alias Sets and Modular Arithmetic

• Alias set = { Trt Comb. estimated by the same contrast }
• Alias sets and blocks are found using modular arithmetic

◦ To confound B and ABC, write x2 = x1+x2+x3 or x1+x3 = 0

x1 + x3 = 0 x1 + x3 = 1

000

010

101

111

=

(1)

b

ac

abc

100

001

110

011

=

a

c

ab

bc

• Complete factorial in blocks
• Each block a 1/2 rep
• Each block has the same information

Source df

Blocks 1
A 1
B 1
C 1
Residual 3
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Running the Factorial

(a)

A

B

C

(b)

A

B

C

(1)

ab

ac

bc

(c)

A

B

C

a

b

abc

c

• Main effects confounded
with interactions

• Fractional factorial typically run as a CRD or an RCB

• Add assumptions that certain interactions are zero

◦ Necessary in order to get estimates of the main effects

• Effect estimates more precise than mean estimates
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Variations on a Theme

• Some examples that go a little beyond the designs that we
have been discussing

◦ Balanced Lattice Designs

◦ Latin Squares/Frac. Factorials/Split Plots

◦ Loops and Reference Designs

• Back to BIBDs
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Balanced Lattice Designs

• An incomplete block design with each treatment appearing
r times is resolvable if the blocks can be divided into r
groups with each group having a complete replication of
the treatments.

◦ RCB yes, BIBD no.

• Balanced Lattice Square

◦ Number of treatments, t is a square

◦ A set of
√

t + 1 orthogonal Latin squares of side t exists

◦ Each pair of treatments appears once in each row and
once in each column
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Balanced Lattice Design, t = 9

Rep 1

Row

1 2 3

1 6 4 5

Col. 2 3 1 2

3 9 7 8

Rep 2

Row

1 2 3

1 4 2 9

Col. 2 3 7 5

3 8 6 1

Rep 3

Row

1 2 3

1 8 4 3

Col. 2 6 2 7

3 1 9 5

Rep 4

Row

1 2 3

1 7 1 4

Col. 2 9 3 6

3 8 2 5

Source df

Reps r − 1

Columns r(k − 1)
Rows r(k − 1)

Treatments t − 1
Residual r(k − 1)(k − 1) − (t − 1)

Total rt − 1 = rk2 − 1

• Rows are BIBD
• Columns are BIBD

τ̂i = t−1
(c−1)2

(ȳi − ȳiR − ȳiC + ¯̄y)

• Variance Free of Block Effects

• Experiment run in “manageable” blocks
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Latin Squares and Fractional Factorials

• In some situations a Latin square is a fractional factorial

• Kerr et al. (2000) describe a microarray Latin square

◦mRNA from liver tissue was compared to muscle tissue

Array

Dye 1 2

Red Liver Muscle

Green Muscle Liver

Confounding structure:
mean ∼ ADT

A ∼ DT

D ∼ AT

T ∼ AD

G ∼ ADTG

AG ∼ DTG

DG ∼ ATG

TG ∼ ADG

• Right = Left +G (G crossed)
• Valid inference ⇒ Right side effects are 0

log Yijkg = µ+Ai+Dj+Tk+Gg+(AG)ig+(TG)kg+εijkg
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Microarray Latin Square

• The Latin square is a 1/2 rep with x1 + x2 + x3 = 0 or 1

Effect

Trt. Comb Array Dye Tissue D × T

1 R L∗ - - - +

1 R M - - + -

1 G L - + - -

1 G M ∗ - + + +

2 R L + - - +

2 R M ∗ + - + -

2 G L∗ + + - -

2 G M + + + +

Source df SS

Array 1 13.675

Dye 1 0.127

Treatment 1 5.577

Gene 99 87.908

A × G 99 21.550

T × G 99 46.873

Residual (D × G) 99 3.471

• ∗ Treatment Combinations were run

• Threeway Interaction confounded with Blocks
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Reference and Loop Designs

•With two-dye systems the experiment is an incomplete
block design (unless there are only two treatments)

•With t treatments, a BIBD we would need
(t
2

)

microarrays.

◦ There is sometimes concern about dye bias

◦ To control this, the experiment would include a dye-swap

Reference Design

Block 1 Block 2 Block 3

A B C

R R R

BIBD

Block 1 Block 2 Block 3

A B C

B C A

• Unfortunately, the
Reference Design became popular

• “fully half of the data are dedicated
to an extraneous sample”
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Experiment: Effect of Aluminum on Zebrafish

• Three treatments : Control, AlCl3(aluminum chloride) and
Nano (aluminum nano particles)

◦ Treatments applied to tanks holding the Zebrafish

◦ RNA extracted; microarray analysis with two dye system

• Possible Designs (• = red dye N =green dye)

(a) = Loop

(b) = Double Loop
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Reference and Loop Variance

• Loops: Balance the Dye Effect

•One gene model: yijk = µ + τi + βj + Dk + εijk

Dye Reference Loop

Green

Red
Ref.

Cont.

Ref.

AlCl3

Ref.

Nano

Cont.

Nano

Nano

AlCl3

AlCl3
Cont.

Reference Design : Var(τ̂i − τ̂i′) = 2σ2
ε + 2σ2

β

Loop Design : Var(τ̂i − τ̂i′) = σ2
ε +

1

2
σ2

β

• Yes, they did the reference design
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Reference and Loop Anova

•Modelling many genes simultaneously

yijkg = µ+ τi +βj +Dk +Gg +(τG)ig +(βG)jg + εijkg

Reference Loop

Source df

Blocks 2

Trts 3

Genes n-1

T × G 3(n-1)

B × G 2(n-1)

Residual 0

Total 6n-1

Source df

Blocks 2

Trts 2

Dye 1

Genes n-1

T × G 2(n-1)

B × G 2(n-1)

Residual n-1

Total 6n-1

• Gene test OK
• Reference: wasted df in T × G
• T and T × G tested with Residual
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Loops and Beyond

• Loop Designs

◦ Balance dyes

◦ Provide good comparisons between adjacent treatments

• Can add blocks to improve non-adjacent comparisons

RNA from Eight Avocado Tissues

Number Name

1 medium bud

2 small bud

3 leaf

4 sepal

Number Name

5 petal

6 stamen

7 carpel

8 fruit
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Loops, Augmented Loops, and BIBDs

• Black = Loop

• Black + Orange+Blue = Augmented Loop

• All = BIBD

• Variances ↓ as we add lines

• Adjacent comparisons better than non-adjacent

• Trts in the same block have more precise comparisons

◦ Except for BIBD, Block variance part of Trt variance
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Example
BIBD

• Three factors, A, B, and C, each at two levels in a BIBD

• The data are
Rep 1 Rep 2 Rep 3 Rep 4

B1 B2 B3 B4 B5 B6 B7 B8

(1) 10 a 17 (1) 11 a 8 (1) 6 b 9 a 17 (1) 9

ab 17 b 12 b 9 ab 9 a 15 ab 14 b 13 ab 15

c 9 ac 19 ac 16 c 6 bc 8 c 7 c 9 ac 17

abc 10 bc 11 abc 16 bc 2 abc 1 ac 14 abc 16 bc 14

• For each rep, we can see which effect is confounded with blocks.

Rep
1 2 3 4

Confounded AB AC BC ABC

• The easiest way to do this question is to stare at an effect table..
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Confounding
BIBD - 2

Rep 1 Rep 2 Rep 3 Rep 4
B1 B2 B3 B4 B5 B6 B7 B8

(1) 10 a 17 (1) 11 a 8 (1) 6 b 9 a 17 (1) 9
ab 17 b 12 b 9 ab 9 a 15 ab 14 b 13 ab 15

c 9 ac 19 ac 16 c 6 bc 8 c 7 c 9 ac 17
abc 10 bc 11 abc 16 bc 2 abc 1 ac 14 abc 16 bc 14

• In Rep 3 the BC interaction is confounded with blocks

• This can be seen from the following contrast table:

A B C BC

(1) − − − +

a + − − +

bc − + + +

abc + + + +

A B C BC

b − + − −
ab + + − −
c − − + −
ac + − + −
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Analysis
BIBD - 3

• Calculate the anova table and test the treatments.

summary(aov(Y ~Rep+Block+A*B*C,data=aovdata))

Df Sum Sq Mean Sq F value Pr(>F)

Rep 3 123.750 41.250 5.9302 0.005845 **

Block 4 125.750 31.438 4.5196 0.011398 *

A 1 200.000 200.000 28.7526 5.174e-05 ***

B 1 8.000 8.000 1.1501 0.298516

C 1 4.500 4.500 0.6469 0.432316

A:B 1 22.042 22.042 3.1688 0.092938 .

A:C 1 15.042 15.042 2.1624 0.159687

B:C 1 1.500 1.500 0.2156 0.648270

A:B:C 1 16.667 16.667 2.3961 0.140056

Residuals 17 118.250 6.956

•Only partial information on the interactions

• Residual is a mix of all of the Trt × Block interactions.

• 17 df for Residual?
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Analysis
BIBD - 4

• Lost degrees of freedom from confounding with blocks
Rep 1 Rep 2 Rep 3 Rep 4

B1 B2 B3 B4 B5 B6 B7 B8

(1) 10 a 17 (1) 11 a 8 (1) 6 b 9 a 17 (1) 9

ab 17 b 12 b 9 ab 9 a 15 ab 14 b 13 ab 15
c 9 ac 19 ac 16 c 6 bc 8 c 7 c 9 ac 17

abc 10 bc 11 abc 16 bc 2 abc 1 ac 14 abc 16 bc 14

Without Blocks

Source df

Reps 3
Trts 7
Trts × Reps 21

Total 28

With Blocks

Source df

Reps 3
Trts 7
Trts × Reps 21

Trts × Blocks in Reps 4
Residual 17

Total 28



Statistical Design: Designs Illustrated [180]

Designs Illustrated

• A small catalog of designs for review

• Four treatment combinations: (1), a, b, and ab

• Look at Layout and Randomization

◦ 16 observations

◦ Each design has 15 total degrees of freedom

• How many ways can you count to 15?



Statistical Design: Designs Illustrated [181]

Completely Randomized Design

Layout Anova

a (1) b a

b a ab b

a ab (1) ab

(1) b ab (1)

Source df

Treatments 3

A 1

B 1

A × B 1

Within Error 12

Total 15

• The within error is model independent

•Difficult design to run

◦ Experimental conditions must be reconstructed every time

•Disadvantage: One “Block” - Limits scope of inference



Statistical Design: Designs Illustrated [182]

RCB - no subsampling

Layout Anova

1 a (1) b ab

Block 2 b a ab (1)

3 a ab (1) b

4 (1) b ab a

Source df

Blocks 3

Treatments 3

T × B 9

Total 15

• Typically easier to run than a CRD

• Here we pooled all of the T × B interactions

• There is no test on the interaction in this model



Statistical Design: Designs Illustrated [183]

RCB - with subsampling

Layout Anova

Block 1 a (1) b ab a ab (1) b

2 b a ab (1) (1) b ab a

Source df

Blocks 1

Treatments 3

T × B 3

Within Error 8

Total 15

• The test on treatments is not as good as previous RCB

• If the observations within a block

◦ Are true (not technical) replications

◦ The within error can be used to test T × B



Statistical Design: Designs Illustrated [184]

Latin Square

Layout Anova

Columns

1 2 3 4

1 (1) b a ab

Rows 2 ab a b (1)

3 b (1) ab a

4 a ab (1) b

Source df

Rows 3

Columns 3

Treatments 3

Residual 6

Total 15

• The design controls two gradients

• Assumption of no interactions

◦ Needed for a good test on treatments

◦ Test can be conservative



Statistical Design: Designs Illustrated [185]

Split Plot - CRD on Whole Plots

Layout Anova

A

Low High

(1) b a ab

b (1) a ab

b (1) ab a

(1) b a ab

Source df

A 1

Reps (in A) 6

B 1

A × B 1

(B × Reps) in A 6

Total 15

• SP Trt. B is randomized on the whole plots

•WP error, Reps (in A), tests A

• SP error, (B × Reps) in A, tests everything below the line.



Statistical Design: Designs Illustrated [186]

Split Plot - RCB on Whole Plots
Layout Anova

A

Low High

1 (1) b a ab

Block 2 b (1) a ab

3 (1) b ab a

4 (1) b ab a

Source df

Blocks 3

A 1

A × Blocks 3

B 1

A × B 1

Split Plot Error 6

Total 15

•B randomized within the levels of A

• All factors are crossed, in contrast to CRD SP design

•One SP error ⇒ Assume no Block × SP interaction



Statistical Design: Designs Illustrated [187]

Strip Plot

Layout Anova

Block 1
b ab

(1) a
Block 2

(1) a

b ab

Block 3
ab b

a (1)
Block 4

ab b

a (1)

Source df

Blocks 3

A 1

A × Blocks 3

B 1

B × Blocks 3

A × B 1

A × B × Blocks 3

Total 15

• In each block

◦A is randomized in columns

◦B is randomized in rows

• Separately, this is an RCB on each of A and B.



Statistical Design: Designs Illustrated [188]

Confounding in Blocks - No Interaction Test

Layout Anova

I a b (1) ab

Reps II (1) ab b a

III a b ab (1)

IV b a ab (1)

Source df

Reps 3

Blocks (in Reps) 4

A 1

B 1

Residual 6

Total 15

• Not a great design

◦ Unless there is no chance of A × B being significant

• In each rep the interaction is confounded with blocks

◦ So there is no test on interaction



Statistical Design: Designs Illustrated [189]

Confounding in Blocks - With Interaction Test

Confounded with Blocks Rep Layout

AB I a b (1) ab

AB II (1) ab a b

B III (1) a b ab

A IV (1) b a ab

Anova

Source df

Reps 3

Blocks (in Reps) 4

A 1

B 1

A × B 1

Residual 5

Total 15

• Interaction: Information from two Reps
Main Effects: Information from three Reps

◦ Reps II, III and IV (or I, III and IV) are a BIBD

◦ t = 4, b = 6, λ = 1, and k = 2



Statistical Design: Designs Illustrated [190]

Thanks for your attention

casella@ufl.edu

http://www.stat.ufl.edu/∼casella/StatDesign


