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Introduction
Terrorism Data

◮ The analysis of data on terrorists and terrorist attacks is difficult.

◮ Typical data are

⊲ Observed public events

⊲ Not including failed attacks

◮ Classified government information

◮ Terrorists seek to strategically hide information
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Introduction
Terrorism Data

◮ Data collection can even be physically dangerous for the researcher

◮ Terrorism is an important
problem

⊲ It affects personal safety

⊲ Internal government policies

⊲ Public perception

⊲ Relations between nations
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Introduction
Overview of the Talk

◮ Background about
terrorism data sets

Problems with the data

◮ Logistic Random
Effects Models

An Introduction to Modelling
Random Effects

◮ Fitting the Models Markov Chain Monte Carlo

◮ Analysis of a
Terrorism Data Set

What the Covariates Explain

◮ Conclusions What We Learned
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Background On Terrorism Data
Types of Data Available

◮ Most of the datasets focus on incidents

◮ Data from an observed violent attack and covariates such as

⊲ Responsible group

⊲ Target characteristics

⊲ The extent of casualties and damage.

◮ Humans in terrorist networks conceal their identities and intentions

◮ Therefore there is a lack of informative covariates
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Background On Terrorism Data
Major Databases

◮ University of Maryland (START)

◮ US Homeland Security Agency

◮ International Terrorism: Attributes of Terrorist Events (ITERATE)

⊲ Records transnational terrorist incidents

◮ International Policy Institute for Counter-Terrorism in Herzlia, Israel

⊲ Detailed online database of terrorist attacks in Israel

◮ The Global Terrorism Database (GTD)

⊲ Information on global terrorist events starting from 1970

⊲ We used this one
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Background On Terrorism Data
Previous Findings

◮ Extremist groups often ↑ terrorist activity after government concessions

⊲ Anecdotal evidence rather than statistical data analysis

◮ Statistical models try to forecast the occurrence of terrorists incidents

⊲ Limited results

◮ Networks of terrorist and terrorist organizations

⊲ Tend to be cellular and independent

⊲ Rather than hierarchical and connected
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Background On Terrorism Data
Data Problems

◮ Not much success in building standard regression models

⊲ The data are, in general, poorly measured

⊲ Categorical variables with large variability

◮ Huge Problem: The terrorists under study

⊲ Are deliberately trying to prevent accurate data from being collected

◮ The statistician has a difficult task in creating meaningful models.
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Background On Terrorism Data
Data Quality Example: Attacks in Israel

Attacker is Challenged
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◮ Y-axis = Number of Casualties

Target is Military
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◮ X-axis = Age of Attacker

◮ Consider some details
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Background On Terrorism Data
Attacks in Israel – Attacker is Challenged

Attacker is Challenged
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◮ Difference in the distribution of
fatalities between the plots.

◮ The attack is less deadly if the
attacker is challenged
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Background On Terrorism Data
Attacks in Israel – Target is Military

Target is Military
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◮ Much higher level of fatalities
for non-military attacks

◮ These terrorist groups prefer
civilian targets.



New Findings from Terrorism Data: Background On Terrorism Data [11]

Background On Terrorism Data
Attacks in Israel – Confounding

Attacker is Challenged
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Target is Military
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◮ There is confounding

◮ Suicide bombers attacking
civilian targets are rarely
challenged

◮ So there is little to distinguish
between these two plots.
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Background On Terrorism Data
Challenges from the Data

◮ Data on terrorist attacks have special challenges

⊲ Coarse measurements; many categorical and qualitative variables.

⊲ Important variables missing: intentions and strategies of the terrorists

◮ Assume: Observed events resemble events that failed or were cancelled

◮ These difficulties in the data-analytic understanding of terrorism

⊲ Lead us to a Bayesian nonparametric setup

⊲ Use a rich error structure with Dirichlet process priors

⊲ Attempt to capture latent variability
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———But First———
Here is the Big Picture

◮ Usual Random Effects Model

Y|ψ ∼ N(Xβ + ψ, σ2I), ψi ∼ N(0, τ 2)

⊲ Subject-specific random effect

◮ Dirichlet Process Random Effects Model

Y|ψ ∼ N(Xβ + ψ, σ2I), ψi ∼ DP(m,N(0, τ 2))

◮ Results in

⊲ Fewer Assumptions

⊲ Better Estimates

⊲ Shorter Credible Intervals
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A Dirichlet Process Random Effects Model
Estimating the Dirichlet Process Parameters

◮ A general random effects Dirichlet Process model can be written

(Y1, . . . , Yn) ∼ f(y1, . . . , yn | θ, ψ1, . . . , ψn) =
∏

i

f(yi|θ, ψi)

⊲ ψ1, . . . , ψn iid from G ∼ DP
⊲ DP is the Dirichlet Process

⊲ Base measure φ0 and precision parameter m

⊲ The vector θ contains all model parameters

◮ Blackwell and MacQueen (1973) proved

ψi|ψ1, . . . , ψi−1 ∼
m

i− 1 +m
φ0(ψi) +

1

i− 1 +m

i−1
∑

l=1

δ(ψl = ψi)

⊲ Where δ denotes the Dirac delta function.
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Some Distributional Structure

◮ Freedman (1963), Ferguson (1973, 1974) and Antoniak (1974)

⊲ Dirichlet process prior for nonparametric G

⊲ Random probability measure on the space of all measures.

◮ Notation

⊲ G0, a base distribution (finite non-null measure)

⊲ m > 0, a precision parameter (finite and non-negative scalar)

⊲ Gives spread of distributions around G0,

⊲ Prior specification G ∼ DP(m,G0) ∈ P .

◮ For any finite partition of the parameter space, {B1, . . . , BK},
(G(B1), . . . , G(BK)) ∼ D (mG0(B1), . . . , mG0(BK)) ,
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A Mixed Dirichlet Process Random Effects Model
Likelihood Function

◮ The likelihood function is integrated over the random effects

L(θ | y) =

∫

f(y1, . . . , yn | θ, ψ1, . . . , ψn)π(ψ1, . . . , ψn) dψ1 · · · dψn

◮ From Lo (1984 Annals) Lemma 2 and Liu (1996 Annals)

L(θ | y) =
Γ(m)

Γ(m + n)

n
∑

k=1

mk





∑

C:|C|=k

k
∏

j=1

Γ(nj)

∫

f(y(j) |θ, ψj)φ0(ψj) dψj



 ,

⊲ The partition C defines the subclusters

⊲ y(j) is the vector of yis in subcluster j

⊲ ψj is the common parameter for that subcluster
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How Is This Nonparametric?

◮ These models stipulate uncertainty at the level of distribution functions

⊲ Allows for infinite dimensional alternatives

⊲ Thus a nonparametric approach

◮ If {f(y|ψ):ψ ∈ (Ψ ⊂ ℜd)} is a parametric family of distributions

⊲ Construct the family of distributions F = {FG : G ∈ P}:

f(y|G) =

∫

f(y|ψ)dG(ψ).

◮ Now F becomes a nonparametric family of mixtures.

◮ G remains random because it comes from a definable measure

⊲ Dirichlet process
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Logistic Regression with Random Effects
Setup

◮ We begin with the model

Yi ∼ Bernoulli(p(Xi)), i = 1, . . . , n

where

⊲ yi =

{

1 if the attack is a suicide attack

0 if the attack is not a suicide attack

⊲ p(Xi) = E(Yi|Xi) is the probability of a success

⊲ Xi = covariates associated with the ith observation

◮ Extra variation is modeled with a random effect

logit(p(Xi)) =
log(p(Xi))

1− log(p(Xi)
= Xiβ + φi,

where φi is a random variable to model extra unexplained variation.
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Logistic Regression with Random Effects
Choices for Random Effect Models

◮ The typical random effect model

logit(p(Xi)) = Xiβ + φi,

⊲ Will often model φi with a normal distribution

⊲ We use the alternative ψi from a Dirichlet process

◮ Notice the clustering

◮ Models extra variability
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Logistic Regression with Random Effects
The Full Hierarchical Model

◮ Observe Yi = 0 or 1 depending on whether the attack was a suicide attack

Yi ∼ Bernoulli(p(Xi)), i = 1, . . . , n

logit(p(Xi)) = Xiβ + ψi,

◮ β ∼ N
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⊲ µ ∝ 1 a flat prior

⊲ σ2 is fixed

◮ Model Parameters

◮ ψi ∼ G, G ∼ DP(mG0),

⊲ G0 = Normal(0, τ 2)

⊲ τ 2 ∼ Inverted Gamma

⊲ m ∼ Gamma

◮ Dirichlet Parameters
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Fitting the Model
Markov Chain Monte Carlo

◮ Use a Gibbs Sampler, a Markov Chain Monte Carlo Algorithm.

⊲ Estimates the posterior distribution of the parameters

⊲ Gives point estimates and confidence intervals

◮ Iterates between Model Parameters and Dirichlet Parameters.

Model Parameters

At Iteration (t)
−→ −→ −→ Dirichlet Parameters

At Iteration (t)

ւ
ւ

ւ
Model Parameters

At Iteration (t + 1)
−→ −→ −→ Dirichlet Parameters

At Iteration (t + 1)
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Fitting the Logistic Parameters
Mixture Representation

◮ Logistic is a Mixture of Normals

⊲ Kolmogorov-Smirnov density:

fKS(x) = 8
∞

∑

α=1

(−1)α+1α2xe−2α2x2

x ≥ 0

⊲ Mixture of normals is logistic (Andrews and Mallows 1974)
∫ ∞

0

1

2x
√

2π
exp

{

−1

2

( y

2x

)2
}

fKS(x) dx =
e−y

(1 + e−y)2

◮ Easy to simulate (Devroye’s (1986) Accept-Reject Algorithm)

◮ Outperforms Slice Sampler
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Fitting the Dirichlet Parameters
Matrix Representation of Partitions

◮ ψ ∼ DP
⊲ ψ = Aη, η ∼ Nk(0, σ

2I)

◮ An×k random with

⊲ Rows: ai is a 1× k vector of all zeros except for a 1 in its subcluster

⊲ Columns: Column sums are the number of observations in the groups

◮ To Generate A

qn×1 ∼ Dirichlet Distribution

ai ∼ Multinomial, i = 1, . . . n A =









a1

a2
...
an









◮ Eliminate columns with all zeros (Kyung et al. 2010)



New Findings from Terrorism Data: Analysis of the Terrorism Data [24]

Analysis of the Terrorism Data
Background

◮ The data come from the Global Terrorism Database II

⊲ Events in the Middle East and Northern Africa from 1998 to 2004

◮ 1998: 273 attacks worldwide, record high of 741 killed, 5952 injured.

⊲ Incredibly destructive simultaneous bombings of the U.S. Embassies in Nairobi,

Kenya (291 killed, roughly 5000 injured), and Dar es Salaam, Tanzania (10 killed, 77

injured) in August.

◮ Categorization of Attack Types

Not Bomb Bomb

Not Suicide 720 661

Suicide 5 224

◮ Outcome variable: Suicide attack/Not. ← Case-Control

◮ Suicide attacks pose a substantially higher challenge for governments

⊲ The assailant has great control over placement and timing

⊲ Does not need to plan his or her escape (Pape 2006).
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Analysis of the Terrorism Data
Some Covariates Used in the Analysis

MULT.INCIDENT
Indicates if the attack is part
of a coordinated multi-site event

SUCCESSFUL
The perceived success rated
by the party attacked

WEAPON.TYPE Type of Weapon: Bomb or Other Weapon
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Analysis of the Terrorism Data
Other Covariates Used in the Analysis

NUM.INJUR
Extent of human damage from
the terrorist attack.

PROPERTY.DAMAGE Amount of property damage.

PSYCHOSOCIAL

The negative psychological/social impact;
ascending levels:
none, minor, moderate, and major.
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But First, We Are Statisticians After All
Model Results, Suicide Attacks

Standard Bayes Model GLMDM Logit

Coefficient COEF SE 95% HPD COEF SE 95% HPD

Intercept -6.457 4.232 -21.605 -3.407 -4.105 0.559 -5.276 -3.079

YEAR - 1998 0.303 0.228 0.135 1.137 0.195 0.039 0.121 0.273

MULT.INCIDENT -0.802 0.488 -2.222 -0.142 -0.585 0.221 -1.028 -0.162

MULTI.PARTY -0.945 0.690 -3.289 -0.225 -0.626 0.229 -1.088 -0.189

SUSP.UNCONFIRM -0.109 0.344 -0.928 0.472 -0.061 0.198 -0.455 0.331

SUCCESSFUL -1.035 0.705 -3.308 -0.262 -0.695 0.245 -1.172 -0.210

ATTACK.TYPE 0.122 0.135 -0.122 0.466 0.098 0.073 -0.046 0.240

WEAPON.TYPE 2.714 1.673 1.346 7.769 1.725 0.320 1.162 2.422

TARGET.TYPE -0.073 0.330 -0.749 0.527 -0.038 0.185 -0.434 0.323

NUM.FATAL -0.019 0.025 -0.085 0.017 -0.013 0.012 -0.036 0.009

NUM.INJUR 0.030 0.030 0.010 0.126 0.017 0.004 0.008 0.025

PROPERTY.DAMAGE 0.439 0.305 0.122 1.406 0.297 0.094 0.114 0.483

PSYCHOSOCIAL 0.824 0.633 0.216 3.044 0.555 0.192 0.188 0.944

◮ Standard errors are smaller with DP random effects
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Model Results, Suicide Attacks
Grey=Standard, Black=DP

−10 −5 0 5
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Intercept

◮ And the credible intervals tend to be shorter
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Analysis of the Terrorism Data
Estimates and Confidence Intervals

Coefficient Coefficient Std. Error 95% CI
MULT.INCIDENT -0.585 0.221 -1.028 -0.162

SUCCESSFUL -0.695 0.245 -1.172 -0.210

WEAPON.TYPE 1.725 0.320 1.162 2.422

NUM.INJUR 0.017 0.004 0.008 0.025

PROPERTY.DAMAGE 0.297 0.094 0.114 0.483

PSYCHOSOCIAL 0.555 0.192 0.188 0.944

◮ Significant Coefficients
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Analysis of the Terrorism Data
Results

MULT.INCIDENT

−0.585∗
Multiple coordinated incidents are less associated
with suicide attacks (9/11/2001 an exception)

◮ Planners of simultaneous terrorist events find it
difficult to arrange multiple suicidal terrorists.

SUCCESSFUL

−0.695
Successful attacks are
less likely to be from suicides

◮ With suicide attacks, variables such as fervent nationalism
and religious extremism, experience, age, intelligence, are important

WEAPON.TYPE

1.725
Bomb attacks are more likely
to be from suicide terrorists.
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Analysis of the Terrorism Data
Results – Continued

NUM.INJUR

0.017
More injuries at the event site suggest
a greater probability of a suicide attack.

PROPERTY.DAMAGE

0.297
Increased property damage is positively associated
with a suicide attack.

◮ This shows the terrorists preference for civilian targets,
which will have more damage than better protected military targets.

PSYCHOSOCIAL

0.555
A goal of suicide attacks are consequences
such as the psychological/social effect.

◮ A fundamental goal of terrorism is to reduce the people’s confidence in
the ability of their government to defend them
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Conclusions
What Did We Learn From the Model?

◮ Multiple groups working together do not typically use suicide attackers

◮ They work in a more military manner with standard weapons

◮ Increased property damage from suicide attacks.

◮ Increased human injuries from suicide attacks.

◮ Suicide attackers prefer civilian targets

◮ Fewer fatalities from suicide attacks.
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Conclusions
From This Model to the Next Step in the Statistical Analysis

◮ Advantages of the Dirichlet model

◮ Usual Model

⊲ Cannot remove enough error variability

⊲ Over-estimates effects of the covariates

◮ Dirichlet Model

⊲ Removes addional error variability

⊲ Does not over-estimate covariate effects

◮ We need more explanatory power

⊲ More covariates

⊲ More government data

⊲ Meta-analysis

◮ These findings may help governments reduce effectiveness of terrorist events.
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Conclusions
What Actions are Suggested from the Data Analysis?

◮ Information on

⊲ Target/Weapon preferences

⊲ Multiple/Single attacks

Help focus intelligence gathering

◮ Plotters of suicide attacks
want

⊲ negative
psychological/social
impact

• Better education of the population
• Increase availability of counseling
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Conclusions
What Actions are Can We Hope For?

◮ A challenge to the terrorist

⊲ Reduces success

• Increase Police/Military Presence

• Increase Population Awareness

◮ We hope for more stories like this
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Thank You for Your Attention

George Casella

casella@ufl.edu
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Findings So Far for Dirichlet Process Random Effects in GLMs

◮ Gill and Casella(2009). “Nonparametric Priors For Ordinal Bayesian Social Science

Models: Specification and Estimation.” JASA, 104, 453-464

DPP on RE can uncover latent clustering.

◮ Kyung et al.(2009) “Characterizing the Variance Improvement in Linear Dirichlet Ran-

dom Effects Models.” Stat. Prob. Letters, 79, 2343-2350

DPP on RE can produce lower SE for regression parameters on average.

◮ Kyung, Gill and Casella(2010) “Estimation in Dirichlet Random Effects Models.”

Annals of Statistics, 38, 979-1009

Estimation of the precision parameter; improved Gibbs sampler.

◮ Kyung et al. (2011) “Sampling Schemes for Generalized Linear Dirichlet Process Ran-

dom Effects Models.” Stat. Methods & Applications, to appear.

Slice sampling worse than KS mixture representation or MH algorithm.

◮ Kyung et al. (2011) “New Findings from Terrorism Data: Dirichlet Process Random

Effects Models for Latent Groups.” JRSSC, to appear.

Logistic model, uncovering latent information with difficult data.


