Carnegie Mellon University University of Pennsylvania January 2012

# Cluster Analysis, Model Selection, and Prior Distributions on Models

George CasellaElías MorenoF. Javier GirónUniversity of FloridaUniversity of GranadaUniversity of Málaga

#### Introduction The Clustering Problem

- $\blacktriangleright Y \sim \mathfrak{F} = \{ f(y|\theta), \theta \in \Theta \}, \text{ where } \Theta \in \mathbb{R}^k$
- ► We observe a sample of *n* independent data  $\mathbf{y} = (y_1, y_2, ..., y_n)$
- We look at the sample as being split into clusters,
   > Observations within a cluster are from the same sample density f(y|θ)
   > The parameter θ of the density changes across clusters.
- ► Goal: To reduce the number of sampling models  $M_j$

 $\triangleright$  By clustering the observation coming from the same model

▶ This is, in fact, a Model Selection problem.

## Outline of the Talk

- ► Some Background
- Structure of Clustering
- ▶ Priors on Models
- ► Consistency
- ► Bayes Factors
- ► Implementation
- ► Conclusions

Challenges, Models

Classifying the clusters

Uniform? or something else?

Not all priors are equal

Intrinsic Priors

Searching and Clustering Regressions

How to cluster

#### Background Just How Many Clusters are there in the Galaxy Data?

- ► Galaxy Data from Postman *et al.* (1986): measurements of velocities in 10<sup>3</sup> km/sec of 82 galaxies from a survey of the Corona Borealis region.
- ▶ Roeder (1990): at least 3, no more than 7 modes (Confidence set)
- $\blacktriangleright$  Others are in consensus

| 9172  | 9350  | 9483  | 9558  | 9775  | 10227 |
|-------|-------|-------|-------|-------|-------|
| 10406 | 16084 | 16170 | 18419 | 18552 | 18600 |
| 18927 | 19052 | 19070 | 19330 | 19343 | 19349 |
| 19440 | 19473 | 19529 | 19541 | 19547 | 19663 |
| 19846 | 19856 | 19863 | 19914 | 19918 | 19973 |
| 19989 | 20166 | 20175 | 20179 | 20196 | 20215 |
| 20221 | 20415 | 20629 | 20795 | 20821 | 20846 |
| 20875 | 20986 | 21137 | 21492 | 21701 | 21814 |
| 21921 | 21960 | 22185 | 22209 | 22242 | 22249 |
| 22314 | 22374 | 22495 | 22746 | 22747 | 22888 |
| 22914 | 23206 | 23241 | 23263 | 23484 | 23538 |
| 23542 | 23666 | 23706 | 23711 | 24129 | 24285 |
| 24289 | 24366 | 24717 | 24990 | 25633 | 26960 |
| 26995 | 32065 | 32789 | 34279 |       |       |

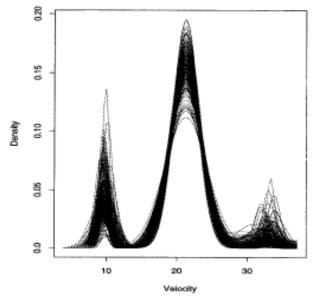


Figure 1. Densities Obtained From the Markov Chain Monte Carlo Sampler Using the Astronomy Data From Roeder (1992).

 $\blacktriangleright$  Histogram from Roeder and Wasserman (1997)

#### Background Modes/Clusters in the Galaxy Data: The Statistics All-Star Team

| Roeder (1990)             | at least 3, no more than 7 (Confidence set) |
|---------------------------|---------------------------------------------|
| Richardson & Green (1997) | 6 has highest posterior probability         |
| Roeder & Wasserman (1997) | The posterior clearly supports three groups |
| Lau & Green (2007)        | Optimal number of clusters is three         |
| Wang & Dunson (2011)      | Five clusters                               |

► Anyone want to bet that there are more than SEVEN??

### Background Clusters in the Galaxy Data: A Simple Approach

► Measure partition using BIC (or any other Model Selector)

▶ Prior distribution says all models equally likely

▶ Run a stochastic search to maximize BIC

 $\triangleright$  Compare current partition to one-cluster

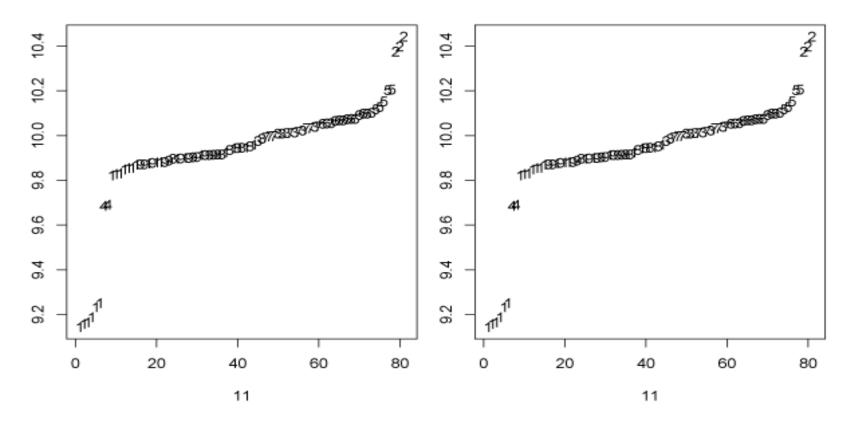
▷ 50,000 iterations (more if you like)

► Reasonable?

#### Background Clusters in the Galaxy Data: What BIC Found

- $\blacktriangleright$  Top partitions had 11 clusters
- ► What Happened?

| Rank | # Clusters | BIC $\times 10^{71}$ |  |
|------|------------|----------------------|--|
| 1    | 11         | 49.53                |  |
| 2    | 11         | 33.13                |  |
| 3    | 11         | 20.19                |  |
| 4    | 11         | 15.48                |  |
| 5    | 11         | 14.39                |  |



### Background Challenges

- $\blacktriangleright$  Assuming that a family of sampling models  $\mathfrak F$  has been chosen
- $\blacktriangleright$  Need to assess the prior distribution for the discrete parameters
- Need to assess the prior for the (usually) continuous parameters θ
   The densities inside the clusters.
- We typically lack substantive prior information on these parameters
   This leads us to propose the use of objective priors.
- Also, we need to compute the very many posterior model probabilities
   There are very many of them

#### Background Product Partition Models

### ► Product Partition Models (PPM):

▷Hartigan (1990)
▷ Barry and Hartigan (1992)
▷Quintana and Iglesias (2003)
▷ Booth *et al.* (2008)

#### ► Product Partition Formulation

 $\triangleright$  The sampling density of the data **y** conditional on a partition  $\mathbf{r}_p$  is

$$f(\mathbf{y}|p, \mathbf{r}_p, \theta_p) = \prod_{i=1}^n f(y_i|\theta_{r_i^{(p)}}).$$

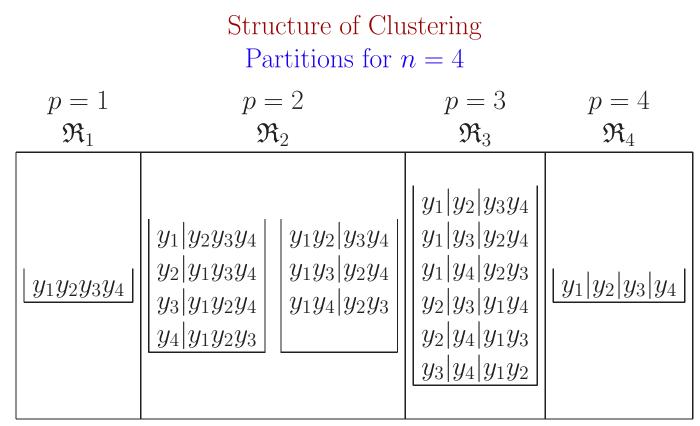
- 1. New observations classified to maximize probability
- 2. We can compute the posterior probability of any given partition.

### Structure of Clustering Introduction

►  $\mathbf{r}_p = (r_1^{(p)}, ..., r_n^{(p)})$  is a *partition* of the sample into p clusters ▷  $r_i^{(p)}, i = 1, ..., n$  is an integer between 1 and p▷  $y_i$  is assigned to cluster  $r_i^{(p)}$ 

#### ▶ For n = 4

▷ There are 15 possible partitions (models), the *Bell number* for n = 4.
▷ In each of the cluster classes, p = 1, 2, 3, 4 there are 1, 7, 6, 1 partitions
▷ 1, 7, 6, 1 are *Stirling numbers of the second kind*



► Four Cluster Classes, Five Configuration Classes

The number of configuration classes in each cluster class is b(n, p)
▷ b(n, p) = partitions of the integer n into p components ≥ 1
▷ b(4, 1) = 1, b(4, 2) = 2, b(4, 3) = 1, b(4, 4) = 1,

► Four Cajas, Five Cajitas

#### Structure of Clustering Models

▶ The sampling density of the data  $\mathbf{y}$  conditional on a given partition  $\mathbf{r}_p$  is

$$f(\mathbf{y}|p, \mathbf{r}_p, \theta_p) = \prod_{i=1}^n f(y_i|\theta_{r_i^{(p)}}).$$

▶ The class of models is 
$$\mathfrak{M} = \bigcup_{1 \leq p \leq n} \mathfrak{M}_p$$

 $\triangleright$  Models in  $\mathfrak{M}_p$  have p clusters

 $\blacktriangleright$  The generic Bayesian model is given as

 $M_{\mathbf{r}_p}: \{f(\mathbf{y}|p,\mathbf{r}_p,\theta_p), \ \pi(p,\mathbf{r}_p,\theta_p|n)\}.$ 

▶ We'll talk about the prior later...

#### Structure of Clustering Bayes Factors

▶ We use as a reference the partition with one cluster,  $M_{\mathbf{r}_1}$ .

▶ We can write the posterior probability of  $M_{\mathbf{r}_p}$  in the class  $\mathfrak{R}_p$  as

$$\pi(\mathbf{r}_p|\mathbf{y},p,n) = \frac{\pi(p,\mathbf{r}_p|n)B_{\mathbf{r}_p,\mathbf{r}_1}(\mathbf{y})}{\sum_{\mathbf{r}_p \in \mathfrak{R}_p} \pi(p,\mathbf{r}_p|n)B_{\mathbf{r}_p,\mathbf{r}_1}(\mathbf{y})}, \quad \text{if } \mathbf{r}_p \in \mathfrak{R}_p,$$

►  $B_{\mathbf{r}_p,\mathbf{r}_1}(\mathbf{y})$  is the Bayes factor for comparing model  $M_{\mathbf{r}_p}$  against  $M_{\mathbf{r}_1}$ .

▶ In the class of all models the posterior probability of model  $M_{\mathbf{r}_p}$  is

$$\pi(\mathbf{r}_p|\mathbf{y}) = \frac{\pi(p, \mathbf{r}_p|n) \ B_{\mathbf{r}_p, \mathbf{r}_1}(\mathbf{y})}{\sum_{p=1}^n \sum_{\mathbf{r}_p \in \mathfrak{R}_p} \pi(p, \mathbf{r}_p|n) \ B_{\mathbf{r}_p, \mathbf{r}_1}(\mathbf{y})}, \text{ if } \mathbf{r}_p \in \mathfrak{R}_p$$

#### Prior Distributions on Models Introduction

▶ We factor the prior for models as

$$\pi(p, \mathbf{r}_p | n) = \pi(\mathbf{r}_p | p, n) \pi(p | n).$$

►  $\pi(\mathbf{r}_p|p, n)$  is much more important than  $\pi(p|n)$ 

 $\triangleright$  Both factors depend on n

 $\triangleright \pi(\mathbf{r}_p|p,n)$  is much more sensitive to n

 $\triangleright$  The size of the cluster classes grows exponentially with n

▶ Uniform Prior A popular choice, giving equal probability to all models:

$$\pi^{U}(p, \mathbf{r}_{p}|n) = \frac{1}{\mathcal{B}_{n}}, \quad \mathcal{B}_{n} \text{ is the Bell number.}$$

▷ This seemingly innocuous choice can have unforeseen consequences.

### Prior Distributions on Models The Hierarchical Uniform Prior (HUP)

► An objective prior for models, using the structure of the cluster problem

 $\blacktriangleright$  To carry our our prior specification, we start from the decomposition

$$\pi(p, \mathbf{r}_p | n) = \underbrace{\pi(\mathbf{r}_p | \Re_{p; n_1, \dots, n_p}, n)}_{\text{Model}} \underbrace{\frac{\pi(\Re_{p; n_1, \dots, n_p} | p, n)}_{\text{Configuration}} \pi(p | n)$$

► The partitions  $\mathbf{r}_p$  in  $\mathfrak{R}_{p;n_1,...,n_p}$  assign  $n_i$  components to  $f(\cdot|\theta_i)$ . ▷ We assign a uniform prior

 $\pi(\mathbf{r}_p|\mathfrak{R}_{p;n_1,\dots,n_p},n) = \text{Uniform in } \mathfrak{R}_{p;n_1,\dots,n_p}$  (Uniform inside Cajitas)

► Assume that the partitions  $\Re_{p;n_1,...,n_p}$  in  $\Re_p$  *a priori* equally likely, so  $\pi(\Re_{p;n_1,...,n_p}|p,n) = b(n,p)^{-1}$  (Uniform among Cajitas)

 $\vartriangleright$  And the hierarchical uniform specification is complete

### Prior Distributions on Models Comparisons

► A small numerical example

▶ Prior probabilities for exchangeable partition sets in  $\Re_3$  for n = 10.

Configuration Hierarchical Uniform Uniform

| $\{1, 3, 6\}$ | 0.14 | 0.09 |
|---------------|------|------|
| $\{2, 3, 5\}$ | 0.14 | 0.27 |

► The partitions are very close, only differing by moving one observation.

 $\triangleright$  Only the HUP gives these partitions the same prior probability

▶ A priori it does not seem that, for n = 10, we would have any reason to assign different probabilities to the configurations  $\{1, 3, 6\}$  and  $\{2, 3, 5\}$ 

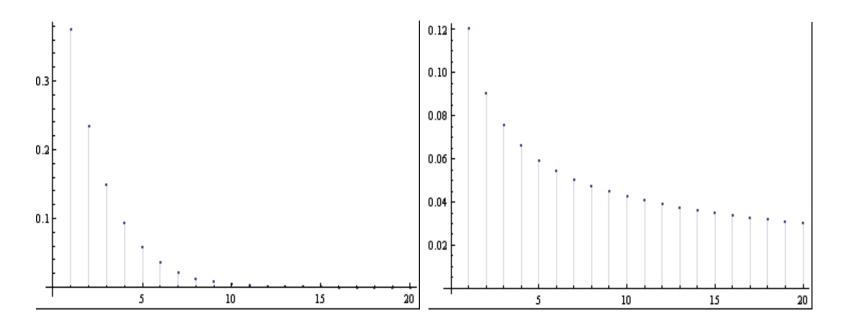
$$\blacktriangleright \#\{1,3,6\} = 840 \qquad \#\{2,3,5\} = 2525$$

### Prior Distributions on Models Prior Distributions for the Number of Clusters

► For the prior  $\pi(p, \mathbf{r}_p | n)$  we need to specify  $\pi(p | n)$ .

▶ We desire a relatively small number of clusters in the sample

 $\triangleright$  The extreme case of n clusters should be given a very small probability.



▶ Left Panel: Poisson-Intrinsic

▶ Right Panel: Poisson-Jeffreys

#### The Role of the Prior in Consistency of the Bayes Procedure Introduction

#### ▶ Bayesian model selection is consistent when

- $\triangleright$  The dimension of the sampling model is fixed
- ▷ Comparisons are pairwise

▶ Follows from consistency of the Bayes factor

▷ The model prior does not play any role in the consistency

▶ However, when the dimension of the model grows with the sample size

- $\triangleright$  The model prior plays an important role for obtaining consistency
- $\triangleright$  This is the case in clustering.
- ► Surprisingly, the actual choice of Bayes factor
  - $\triangleright$  Is of almost no consequence in determining consistency
  - ▷ Many Bayes factors have the same asymptotic representation.

#### The Role of the Prior in Consistency of the Bayes Procedure Consistency and Inconsistency

 $\blacktriangleright As \ n \to \infty$ 

- $\triangleright$  Consistency is specific to the limiting configuration  $\left(\frac{n_1}{n}, \ldots, \ldots, \frac{n_p}{n}\right)$
- $\triangleright$  Assume that the number of clusters p is bounded, that is,  $p \leq M < \infty$ .
- ▶ Theorem With the uniform prior, when sampling from  $M_{\mathbf{r}_1}$ ,

$$\lim_{n \to \infty} \Pr(\boldsymbol{\Re}_p | \mathbf{y}) = \begin{cases} 1, & \text{if } p = M, \\ 0, & \text{if } p \le M - 1 \end{cases}$$

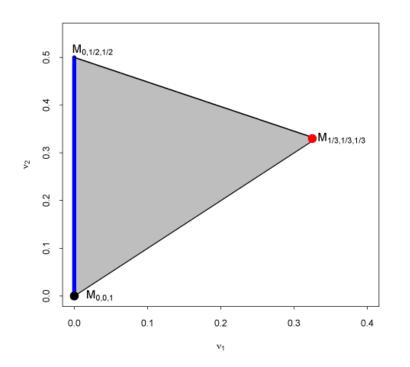
- $\triangleright$  The uniform prior picks the biggest model with probability one.
- $\triangleright$  It is also the wrong model.

▶ Theorem With the hierarchical uniform prior, when sampling from  $M_{\mathbf{r}_1}$ ,

$$\lim_{n\to\infty}\Pr(\mathfrak{R}_1|\mathbf{y})=1.$$

 $\triangleright$  The correct model is chosen with probability 1.

The Role of the Prior in Consistency of the Bayes Procedure Limiting Distributions (p = 3)



- $\blacktriangleright \mathfrak{R}_1 =$ Black Dot
- $\blacktriangleright \mathfrak{R}_2 =$  Blue Line

$$\blacktriangleright \mathfrak{R}_3 = \text{Grey Triangle}$$

▶ The HUP converges in distribution to a uniform prior on the simplex.

- ▶ The Uniform Prior converges distribution to a degenerate distribution
  - $\triangleright$  Concentrated at the vertex  $(\frac{1}{p}, \ldots, \frac{1}{p})$  of the simplex
  - $\triangleright \ {\rm Red} \ {\rm Dot}$

### Intrinsic Priors for the Continuous Parameters Linear Models

▶ Suppose that the sample  $(y_1, ..., y_n)$  follows a normal linear model

$$\mathbf{y} = \mathbf{X}\beta + \varepsilon, \quad \varepsilon \sim N_n(\varepsilon | \mathbf{0}, \tau^2 \mathbf{I}_n),$$

► Since  $f(\mathbf{y}|1, \mathbf{r}_1, \beta, \tau)$  is nested in  $f(\mathbf{y}|p, \mathbf{r}_p, \beta_1, ..., \beta_p, \sigma_p)$ ,

▷ Intrinsic methodology gives the intrinsic prior for the parameter  $(\beta_1, ..., \beta_p, \sigma_p)$ 

▶ The Intrinsic Bayes factor is a function of

 $\mathcal{R}_{\mathbf{r}_p} = \frac{RSS_{n_1} + \ldots + RSS_{n_p}}{RSS_n}, \quad RSS_{n_i} = \text{ residual sum of squares}$ 

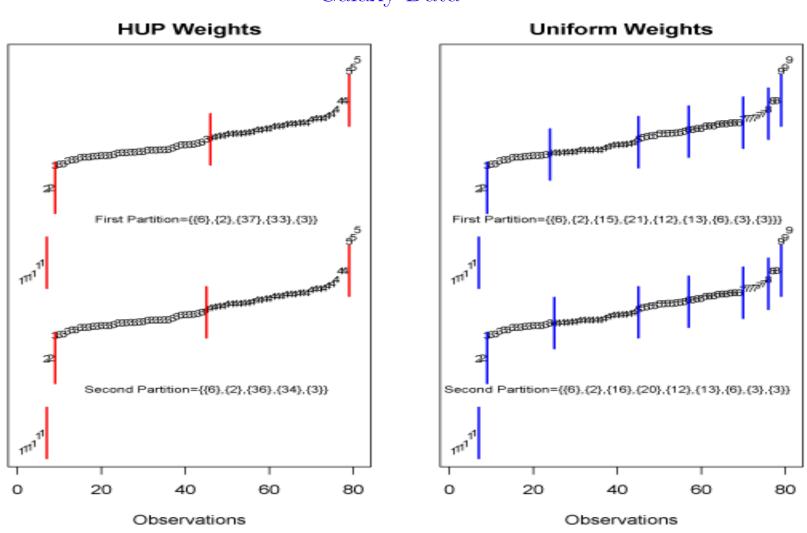
 $\triangleright$  Along with an ugly dimension correction

▶ Hybrid search algorithm, based on a Metropolis-Hastings algorithm

▶ Variation of the biased random walk of Booth *et al.* (2008).

### Implementation Galaxy Data

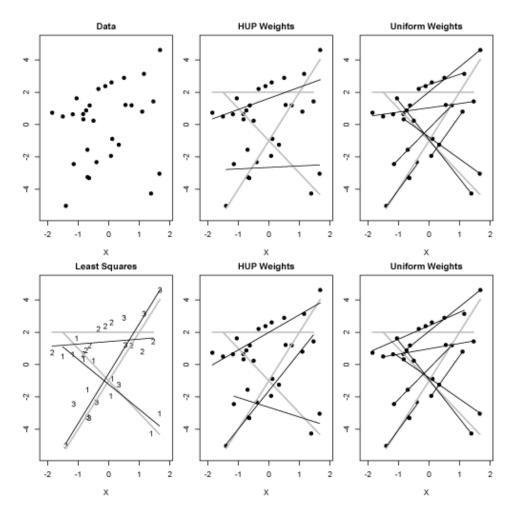
- ▶ We return Galaxy data (Roeder 1990) as a benchmark.
- $\blacktriangleright$  Observations on the velocity (km/second) of 81 galaxies.
  - $\triangleright$  Recall: It is well accepted that there are between 5 and 7 clusters in the data
- ▶ The top 25 HUP partitions in the search all had 5 clusters.
- ► The Uniform search found partitions with 9 clusters
  - $\triangleright$  By consensus this is too many clusters.



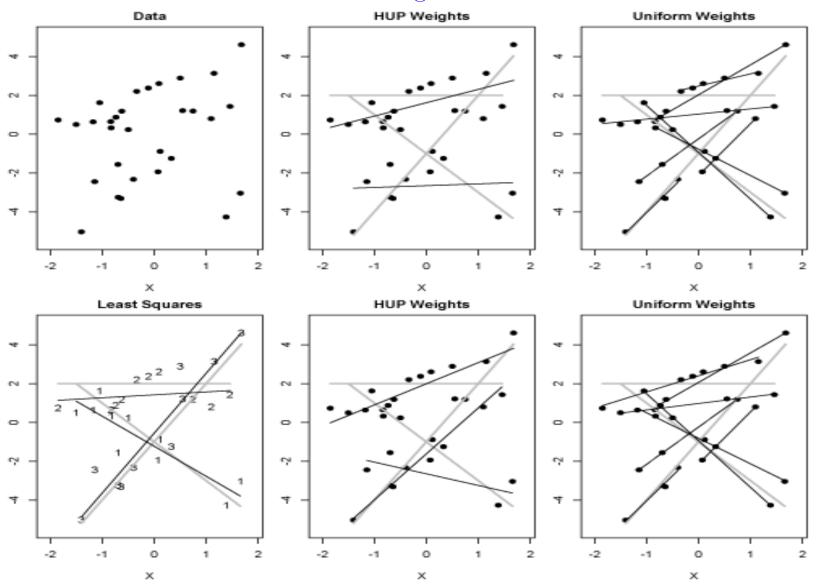
#### Galaxy Data

HUP top and bottom clusters differ only by one shift point in the middle string
 Y-axis is log(Velocity)

#### Evaluating the Procedures Simulated Regression Data



- ► Left top: Simulated Data from three models
- ► Left bottom: True models (grey) and the least squares fit.
- Middle: Typical results from HUP weights
- ► Right: Typical results from uniform weights.
- ► A Bigger Picture...



#### Simulated Regression Data

#### Evaluating the Procedures Concha y Toro Data

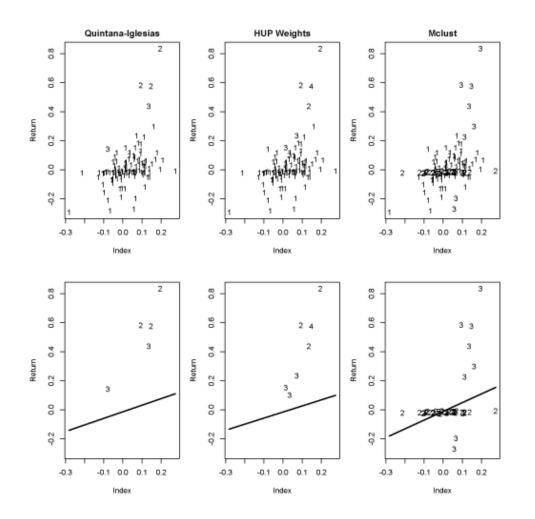
- ▶ Quintana and Iglesias (2003) (QI) analyze economic data pertaining to the winemaker *Concha Y Toro*.
- ▶ This is simple linear regression data, using a model of the form

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

 $\triangleright y =$ the Concha Y Toro stock return

- $\triangleright x = a$  stock market index, similar to the US Dow-Jones Index.
- $\blacktriangleright$  QI use a version of their full PPM model set up for outlier detection
- ▶ We ran the data using only default settings and HUP weights

#### Evaluating the Procedures Concha y Toro Data



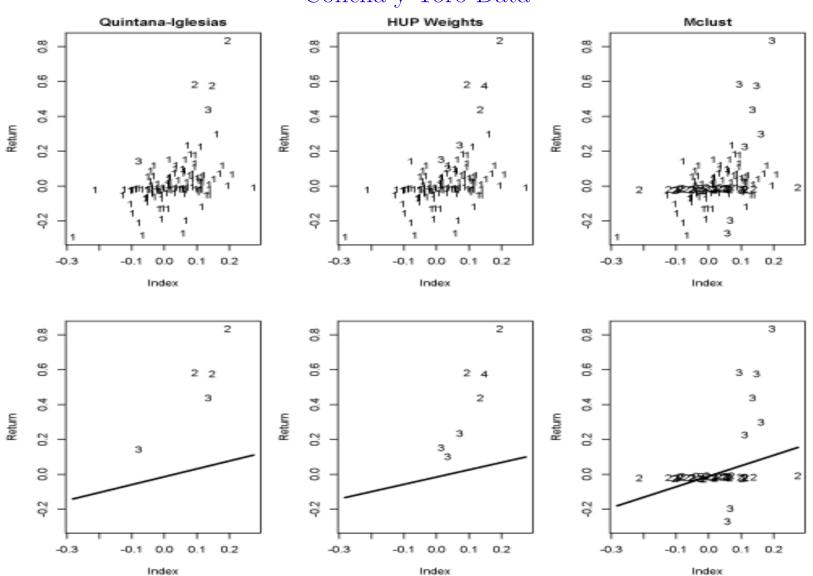
▶ We found three clusters

> one large one containing the data without outliers

- $\triangleright$  Two other "outlier clusters"
- ► Similar to QI findings
- ► Mclust also found three clusters.

 $\triangleright$  Two large, one small

► A Bigger Picture...



#### Concha y Toro Data



► Inference

► Limit Results

► Theory and Examples

Conclusions How to Cluster?

- HUP: Good and consistent
- Uniform: Too many clusters and inconsistent
- Want small number of clusters
- Need the prior to pull there
- Even if the truth is a large number of clusters

• Emphasizes the value of HUP

• Findings are compatible

## Conclusions Next?

#### ► Generalizations

► Next?

- Limit results apply to Bayes factors
- BIC is asymptotically equivalent intrinsic Bayes
- Can extend to a wide class of priors.
- Other models?
- Linear mixed
- Discrete

#### Thank You for Your Attention



George Casella casella@ufl.edu

Elías Moreno emoreno@ugr.es

F. Javier Girón fj\_giron@uma.es

### Selected References All on my web page

- Booth, J.G., Casella, G. and Hobert, J.P. (2008). Clustering using objective functions and stochastic search. J. R. Statist. Soc. B, 70, 1, 119–139.
- Casella, G. and Moreno, E. (2006) Objective Bayes Variable Selection. *Journal of the American Statistical Association* **101** 157-167.
- Casella, G., Girón, F.J., Martínez, M.L. and Moreno E. (2009). Consistency of Bayesian procedure for variable selection. *Annals of Statistics*, **37**, 3, 1207-1228.
- Girón, F.J., Moreno, E., Casella, G. and Martínez, M.L. (2010). Consistency of objective Bayes factors for nonnested linear models and increasing model dimension. *RACSAM* 104 (1), 61–71.
- Moreno, E., Bertolino, F. and Racugno, W. (1998). An intrinsic limiting procedure for model selection and hypothesis testing. J. Amer. Statist. Assoc., **93**, 1451-1460.
- Moreno, E., Girón, F.J. and Casella, G. (2010). Consistency of objective Bayesian tests as the model dimension increases. *Annals of Statistics* **38** 1937-1952