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Introduction
The Clustering Problem

◮ Y ∼ F = {f(y|θ), θ ∈ Θ}, where Θ ∈ R
k

◮ We observe a sample of n independent data y = (y1, y2, ..., yn)

◮ We look at the sample as being split into clusters,

⊲ Observations within a cluster are from the same sample density f(y|θ)

⊲ The parameter θ of the density changes across clusters.

◮ Goal: To reduce the number of sampling models Mj

⊲ By clustering the observation coming from the same model

◮ This is, in fact, a Model Selection problem.
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Outline of the Talk

◮ Some Background Challenges, Models

◮ Structure of
Clustering

Classifying the clusters

◮ Priors on Models Uniform? or something else?

◮ Consistency Not all priors are equal

◮ Bayes Factors Intrinsic Priors

◮ Implementation
Searching and
Clustering Regressions

◮ Conclusions How to cluster
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Background
Just How Many Clusters are there in the Galaxy Data?

◮ Galaxy Data from Postman et al. (1986): measurements of velocities in
103 km/sec of 82 galaxies from a survey of the Corona Borealis region.

◮ Roeder (1990): at least 3, no more than 7 modes (Confidence set)

◮ Others are in consensus

9172 9350 9483 9558 9775 10227

10406 16084 16170 18419 18552 18600

18927 19052 19070 19330 19343 19349

19440 19473 19529 19541 19547 19663

19846 19856 19863 19914 19918 19973

19989 20166 20175 20179 20196 20215

20221 20415 20629 20795 20821 20846

20875 20986 21137 21492 21701 21814

21921 21960 22185 22209 22242 22249

22314 22374 22495 22746 22747 22888

22914 23206 23241 23263 23484 23538

23542 23666 23706 23711 24129 24285

24289 24366 24717 24990 25633 26960

26995 32065 32789 34279

◮ Histogram from Roeder and Wasserman (1997)
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Background
Modes/Clusters in the Galaxy Data: The Statistics All-Star Team

Roeder (1990) at least 3, no more than 7 (Confidence set)

Richardson & Green (1997) 6 has highest posterior probability

Roeder & Wasserman (1997) The posterior clearly supports three groups

Lau & Green (2007) Optimal number of clusters is three

Wang & Dunson (2011) Five clusters

◮ Anyone want to bet that there are more than SEVEN??
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Background
Clusters in the Galaxy Data: A Simple Approach

◮ Measure partition using BIC (or any other Model Selector)

◮ Prior distribution says all models equally likely

◮ Run a stochastic search to maximize BIC

⊲ Compare current partition to one-cluster

⊲ 50, 000 iterations (more if you like)

◮ Reasonable?
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Background
Clusters in the Galaxy Data: What BIC Found

◮ Top partitions had 11 clusters

◮ What Happened?

Rank # Clusters BIC ×1071

1 11 49.53

2 11 33.13

3 11 20.19

4 11 15.48

5 11 14.39
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Background
Challenges

◮ Assuming that a family of sampling models F has been chosen

◮ Need to assess the prior distribution for the discrete parameters

◮ Need to assess the prior for the (usually) continuous parameters θ

⊲ The densities inside the clusters.

◮ We typically lack substantive prior information on these parameters

⊲ This leads us to propose the use of objective priors.

◮ Also, we need to compute the very many posterior model probabilities

⊲ There are very many of them
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Background
Product Partition Models

◮ Product Partition Models (PPM):

⊲Hartigan (1990) ⊲ Barry and Hartigan (1992)

⊲Quintana and Iglesias (2003) ⊲ Booth et al. (2008 )

◮ Product Partition Formulation

⊲ The sampling density of the data y conditional on a partition rp is

f(y|p, rp, θp) =

n∏

i=1

f(yi|θ
r
(p)
i

).

1. New observations classified to maximize probability

2. We can compute the posterior probability of any given partition.
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Structure of Clustering
Introduction

◮ rp = (r
(p)
1 , ..., r

(p)
n ) is a partition of the sample into p clusters

⊲ r
(p)
i , i = 1, . . . n is an integer between 1 and p

⊲ yi is assigned to cluster r
(p)
i

◮ For n = 4

⊲ There are 15 possible partitions (models), the Bell number for n = 4.

⊲ In each of the cluster classes, p = 1, 2, 3, 4 there are 1, 7, 6, 1 partitions

⊲ 1, 7, 6, 1 are Stirling numbers of the second kind
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Structure of Clustering
Partitions for n = 4

p = 1 p = 2 p = 3 p = 4
R1 R2 R3 R4

y1y2y3y4

y1|y2y3y4 y1y2|y3y4

y2|y1y3y4 y1y3|y2y4

y3|y1y2y4 y1y4|y2y3

y4|y1y2y3

y1|y2|y3y4

y1|y3|y2y4

y1|y4|y2y3

y2|y3|y1y4

y2|y4|y1y3

y3|y4|y1y2

y1|y2|y3|y4

◮ Four Cluster Classes, Five Configuration Classes

◮ The number of configuration classes in each cluster class is b(n, p)

⊲ b(n, p) = partitions of the integer n into p components ≥ 1

⊲ b(4, 1) = 1, b(4, 2) = 2, b(4, 3) = 1, b(4, 4) = 1,

◮ Four Cajas, Five Cajitas
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Structure of Clustering
Models

◮ The sampling density of the data y conditional on a given partition rp is

f(y|p, rp, θp) =

n∏

i=1

f(yi|θ
r
(p)
i

).

◮ The class of models is M = ∪1≤p≤n Mp

⊲ Models in Mp have p clusters

◮ The generic Bayesian model is given as

Mrp : {f(y|p, rp, θp), π(p, rp, θp|n)}.

◮ We’ll talk about the prior later...
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Structure of Clustering
Bayes Factors

◮ We use as a reference the partition with one cluster, Mr1.

◮ We can write the posterior probability of Mrp in the class Rp as

π(rp|y,p, n) =
π(p, rp|n)Brp,r1(y)

∑

rp∈Rp
π(p, rp|n)Brp,r1(y)

, if rp ∈ Rp,

◮ Brp,r1(y) is the Bayes factor for comparing model Mrp against Mr1.

◮ In the class of all models the posterior probability of model Mrp is

π(rp|y) =
π(p, rp|n) Brp,r1(y)

∑n
p=1

∑

rp∈Rp
π(p, rp|n) Brp,r1(y)

, if rp ∈ R
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Prior Distributions on Models
Introduction

◮ We factor the prior for models as

π(p, rp|n) = π(rp|p, n)π(p|n).

◮ π(rp|p, n) is much more important than π(p|n)

⊲ Both factors depend on n

⊲ π(rp|p, n) is much more sensitive to n

⊲ The size of the cluster classes grows exponentially with n

◮ Uniform Prior A popular choice, giving equal probability to all models:

πU(p, rp|n) =
1

Bn

, Bn is the Bell number.

⊲ This seemingly innocuous choice can have unforeseen consequences.
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Prior Distributions on Models
The Hierarchical Uniform Prior (HUP)

◮ An objective prior for models,using the structure of the cluster problem

◮ To carry our our prior specification, we start from the decomposition

π(p, rp|n) = π(rp|Rp;n1,...,np, n)
︸ ︷︷ ︸

Model

π(Rp;n1,...,np|p, n)
︸ ︷︷ ︸

Configuration

π(p|n)

◮ The partitions rp in Rp;n1,...,np assign ni components to f(·|θi).

⊲ We assign a uniform prior

π(rp|Rp;n1,...,np, n) = Uniform in Rp;n1,...,np (Uniform inside Cajitas)

◮ Assume that the partitions Rp;n1,...,np in Rp a priori equally likely, so

π(Rp;n1,...,np|p, n) = b(n, p)−1 (Uniform among Cajitas)

⊲ And the hierarchical uniform specification is complete
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Prior Distributions on Models
Comparisons

◮ A small numerical example

◮ Prior probabilities for exchangeable partition sets in R3 for n = 10.

Configuration Hierarchical Uniform Uniform

{1, 3, 6} 0.14 0.09
{2, 3, 5} 0.14 0.27

◮ The partitions are very close, only differing by moving one observation.

⊲ Only the HUP gives these partitions the same prior probability

◮ A priori it does not seem that, for n = 10, we would have any reason to
assign different probabilities to the configurations {1, 3, 6} and {2, 3, 5}

◮ #{1, 3, 6} = 840 #{2, 3, 5} = 2525
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Prior Distributions on Models
Prior Distributions for the Number of Clusters

◮ For the prior π(p, rp|n) we need to specify π(p|n).

◮ We desire a relatively small number of clusters in the sample

⊲ The extreme case of n clusters should be given a very small probability.

◮ Left Panel: Poisson-Intrinsic ◮ Right Panel: Poisson-Jeffreys
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The Role of the Prior in Consistency of the Bayes Procedure
Introduction

◮ Bayesian model selection is consistent when

⊲ The dimension of the sampling model is fixed

⊲ Comparisons are pairwise

◮ Follows from consistency of the Bayes factor

⊲ The model prior does not play any role in the consistency

◮ However, when the dimension of the model grows with the sample size

⊲ The model prior plays an important role for obtaining consistency

⊲ This is the case in clustering.

◮ Surprisingly, the actual choice of Bayes factor

⊲ Is of almost no consequence in determining consistency

⊲ Many Bayes factors have the same asymptotic representation.
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The Role of the Prior in Consistency of the Bayes Procedure
Consistency and Inconsistency

◮ As n → ∞

⊲ Consistency is specific to the limiting configuration
(

n1

n
, . . . , , ...,

np

n

)

⊲ Assume that the number of clusters p is bounded, that is, p ≤ M < ∞.

◮ Theorem With the uniform prior, when sampling from Mr1,

lim
n→∞

Pr(Rp|y) =

{
1, if p = M,

0, if p ≤ M − 1.

⊲ The uniform prior picks the biggest model with probability one.

⊲ It is also the wrong model.

◮ Theorem With the hierarchical uniform prior, when sampling from Mr1,

lim
n→∞

Pr(R1|y) = 1.

⊲ The correct model is chosen with probability 1.
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The Role of the Prior in Consistency of the Bayes Procedure
Limiting Distributions (p = 3)

◮ R1 = Black Dot

◮ R2 = Blue Line

◮ R3 = Grey Triangle

◮ The HUP converges in distribution to a uniform prior on the simplex.

◮ The Uniform Prior converges distribution to a degenerate distribution

⊲ Concentrated at the vertex (1
p
, . . . , 1

p
) of the simplex

⊲ Red Dot
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Intrinsic Priors for the Continuous Parameters
Linear Models

◮ Suppose that the sample (y 1, ..., yn) follows a normal linear model

y = Xβ + ε, ε ∼ Nn(ε|0, τ 2In),

◮ Since f(y|1, r1, β, τ ) is nested in f(y|p, rp, β1, .., βp, σp),

⊲ Intrinsic methodology gives the intrinsic prior for the parameter (β1, ..., βp, σp)

◮ The Intrinsic Bayes factor is a function of

Rrp =
RSSn1 + . . . + RSSnp

RSSn

, RSSni
= residual sum of squares

⊲ Along with an ugly dimension correction

◮ Hybrid search algorithm, based on a Metropolis-Hastings algorithm

◮ Variation of the biased random walk of Booth et al. (2008).
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Implementation
Galaxy Data

◮ We return Galaxy data (Roeder 1990) as a benchmark.

◮ Observations on the velocity (km/second) of 81 galaxies.

⊲ Recall: It is well accepted that there are between 5 and 7 clusters in the data

◮ The top 25 HUP partitions in the search all had 5 clusters.

◮ The Uniform search found partitions with 9 clusters

⊲ By consensus this is too many clusters.



Clusters, Models and Priors: Intrinsic Priors[22]

Galaxy Data

◮ HUP top and bottom clusters differ only by one shift point in the middle string

⊲ Y-axis is log(Velocity)
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Evaluating the Procedures
Simulated Regression Data

◮ Left top: Simulated Data

from three models

◮ Left bottom: True models (grey)

and the least squares fit.

◮ Middle: Typical results

from HUP weights

◮ Right: Typical results

from uniform weights.

◮ A Bigger Picture...
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Simulated Regression Data
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Evaluating the Procedures
Concha y Toro Data

◮ Quintana and Iglesias (2003) (QI) analyze economic data pertaining to
the winemaker Concha Y Toro.

◮ This is simple linear regression data, using a model of the form

yi = β0 + β1xi + εi,

⊲ y = the Concha Y Toro stock return

⊲ x = a stock market index, similar to the US Dow-Jones Index.

◮ QI use a version of their full PPM model set up for outlier detection

◮ We ran the data using only default settings and HUP weights
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Evaluating the Procedures
Concha y Toro Data

◮ We found three clusters

⊲ one large one containing

the data without outliers

⊲ Two other “outlier clusters”

◮ Similar to QI findings

◮ Mclust also found three clusters.

⊲ Two large, one small

◮ A Bigger Picture...
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Concha y Toro Data
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Conclusions
How to Cluster?

◮ Priors
• HUP: Good and consistent
• Uniform: Too many clusters and inconsistent

◮ Inference

• Want small number of clusters
• Need the prior to pull there
• Even if the truth is a large number of clusters

◮ Limit Results • Emphasizes the value of HUP

◮ Theory and
Examples

• Findings are compatible
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Conclusions
Next?

◮ Generalizations
• Limit results apply to Bayes factors

• BIC is asymptotically equivalent intrinsic Bayes

• Can extend to a wide class of priors.

◮ Next?
• Other models?

• Linear mixed

• Discrete
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