Student Seminar, University of Florida, April 2009

Giving Presentations

George Casella Department of Statistics University of Florida

Supported by NSF Grants: DMS-0631632 and SES-0631588.

Before the Presentation

▶ Before the Presentation

 \triangleright Practice - get the timing right

 \triangleright Don't give a handout

 \triangleright Be prepared for trouble

▷ Have your talk on laptop, CD, memory key
▷ Have a copy on the web, in your email
▷ Hardcopy to be faxed

Before the Presentation

▶ Before the Presentation

 \triangleright Practice - get the timing right

 \triangleright Don't give a handout

 \triangleright Be prepared for trouble

▷ Have your talk on laptop, CD, memory key
▷ Have a copy on the web, in your email
▷ Hardcopy to be faxed

Notice the nice use of colors

Before the Presentation

► Before the Presentation

 \triangleright Practice - get the timing right

 \triangleright Don't give a handout

 \triangleright Be prepared for trouble

▷ Have your talk on laptop, CD, memory key
▷ Have a copy on the web, in your email
▷ Hardcopy to be faxed

But don't do this

► During the Presentation

- ▷ Keep pointer (regular or laser) steady - don't waggle
- ▷ Talk slowly and clearly and avoid colloquialisms
 - ▷ "the results are inconclusive" NOT "the bottom line is crazy"
 - ▷ "the derivation is straightforward" NOT "it is easy as pie"
 - ▷ "relaxing at home" NOT "chillin in my crib"

► During the Presentation

▷ Move around, look at people, modulate your voice

▷ Get excited about your results!!!!

 \triangleright Don't cram the slide

 \triangleright use big fonts

 \triangleright only a small amount of info per slide

 \triangleright Use lots of figures

 \triangleright Don't use lots of tables

► During the Presentation

- ▷ Keep pointer (regular or laser) steady - don't waggle
- \triangleright Talk slowly and clearly and avoid colloquialisms
 - \triangleright "the results are inconclusive" NOT "the bottom line is crazy"
 - ▷ "the derivation is straightforward" NOT "it is easy as pie"
 - \triangleright "relaxing at home" NOT "chillin in my crib"
- \triangleright Move around, look at people, modulate your voice
- \triangleright Get excited about your results!!!!
- \triangleright Don't cram the slide
 - \triangleright use big fonts
 - \triangleright only a small amount of info per slide
- \triangleright Use lots of figures
- \triangleright Don't use lots of tables

This is the previous two slides on one - don't do this!

Bad Slide

For example, if $S_1 = \{3, 4, 6\}, S_2 = \{1, 2\}, S_3 = \{5\},\$

$$\begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_6 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}.$$
 (1)

We then have

$$\sum_{C:|C|=k} \prod_{j=1}^{k} \Gamma(n_j) \int f(\mathbf{y}_{(j)} \mid \theta, \psi_j) \phi_0(\psi_j) \, d\psi_j$$
$$= \sum_{A \in \mathcal{A}_k} \prod_{j=1}^{k} \Gamma(n_j) \int f(\mathbf{y} \mid \theta, A\eta) \phi_0(\eta) \, d\eta,$$

where \mathcal{A}_k is the set of all matrices A and $\eta_j \sim \phi_0$, independent. If we define

$$f(\mathbf{y}|\boldsymbol{\theta}, \boldsymbol{A}) = \int f(\mathbf{y} \mid \boldsymbol{\theta}, \boldsymbol{A}\boldsymbol{\eta})\phi_0(\boldsymbol{\eta}) \, d\boldsymbol{\eta},$$
⁽²⁾

the likelihood function is

$$L(\theta \mid \mathbf{y}) = \frac{\Gamma(m)}{\Gamma(m+n)} \sum_{k=1}^{n} m^{k} \sum_{A \in \mathcal{A}_{k}} \prod_{j=1}^{k} \Gamma(n_{j}) f(\mathbf{y}|\theta, A).$$
(3)

Note that if the integral in (2) can be done analytically, as will happen in the normal case discussed next, we have effectively eliminated the random effects from the likelihood, replacing them with the A matrices, which serve to group the observations.

Good Slide

A Mixed Dirichlet Random Effects Model – Underlying Random Effects

$$C = \{S_1, S_2, S_3\} = \{\{3, 4, 6\}, \{1, 2\}, \{5\}\} \leftrightarrow A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

► Matrix Representation

$$\boldsymbol{\psi} = A\boldsymbol{\eta} \quad \text{where } A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \text{ so } \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_6 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}.$$

▶ Only need to generate three random variables

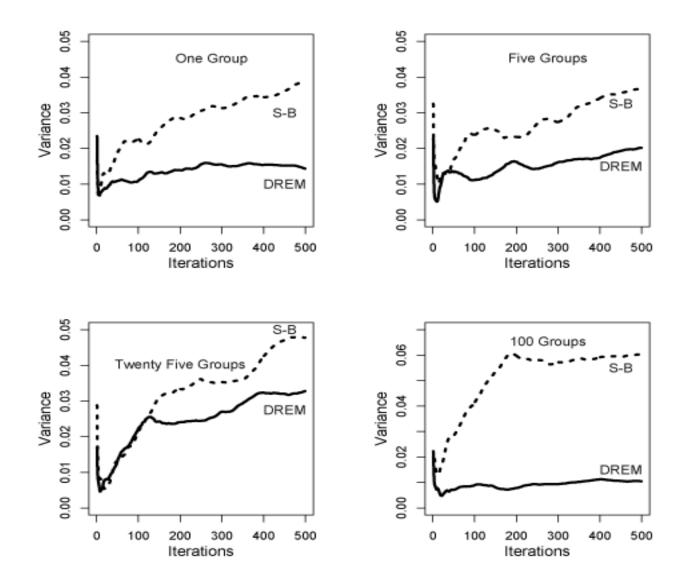
Using Colors Wisely

► Color key a formula

Our chain

Stick-breaking chain

$$P(a_{j} = 1 | A_{-j}) \\ \propto \begin{cases} \left(\frac{n_{j}}{n-1+m}\right) \left(\frac{q_{j}}{n_{j}+1}\right) & j = 1, \dots, k \\ \frac{m}{n-1+m} q_{k+1} & j = k+1, \dots, n \end{cases} \qquad P(a_{j} = 1 | A_{-j}) \\ \propto \begin{cases} \frac{n_{j}}{n-1+m} & j = 1, \dots, k \\ \frac{m}{n-1+m} & j = k+1 \end{cases}$$


► This is a Parameter Expansion (Liu/Wu 1999JASA, vanDyk/Meng 2001 JCGS)

Bad Slide

The estimated means of family effects for the data set without missing values and for data sets with different percentages of missing values. There are 6 families and 5 SNPs in the data sets. This methodology gives accurate estimates as the percentage of missing values goes up 5 to 20%.

Estimated means	family1: β_1	family 2: β_2	family3: β_3
Actual values:	15	20	25
No missing SNPs	15.45	20.65	25.48
5% missing SNPs	15.16	20.74	25.46
10% missing SNPs	16.18	21.38	25.65
15% missing SNPs	15.45	19.63	24.59
20% missing SNPs	14.87	20.18	24.68
Estimated means	family 4: β_4	family 5: β_5	family 6: β_6
		8 1 3	0 / 3
Actual values:	30	35	40
Actual values: No missing SNPs	30 29.84	-	40 40.40
		35	
No missing SNPs	29.84	35 34.76	40.40
No missing SNPs5% missing SNPs	29.84 28.29	35 34.76 33.43	40.40 38.62

Good Slide

► During the Presentation

▷ Have one slide with impressive formulas - to show that you can do it!

 \triangleright Take your time - don't rush through the material

 \triangleright Talk ABOUT the slide - don't read the slide to the audience

▷ Simple equations only (don't give an "Appendix" talk)

▷ END ON TIME - Even if you don't cover everything

 \triangleright Be prepared to edit as you go

The content of the talk

► The content of the talk

▷ Motivate the problem - why is it important?

▷ Simplify your results

 \triangleright Simple Examples get the point across

 \triangleright Highlight what YOU have done!

 \triangleright Summarize

The Ending

Thank You for Your Attention

casella@ufl.edu

University of Florida Gators