IMS Medallion Lecture, JSM, Washington DC, August 2009

From R. A. Fisher to Microarrays Why 70 Year Old Theory is Relevant Today

George Casella Department of Statistics University of Florida casella@ufl.edu

Overview

- ► From the Field to the Lab
- ► Getting the Errors Correct
- ► Revisiting the Field and the Lab
- ► Replication True and Technical
- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

- There is nothing here that your don't already know
- (or knew)
- but maybe not in this context

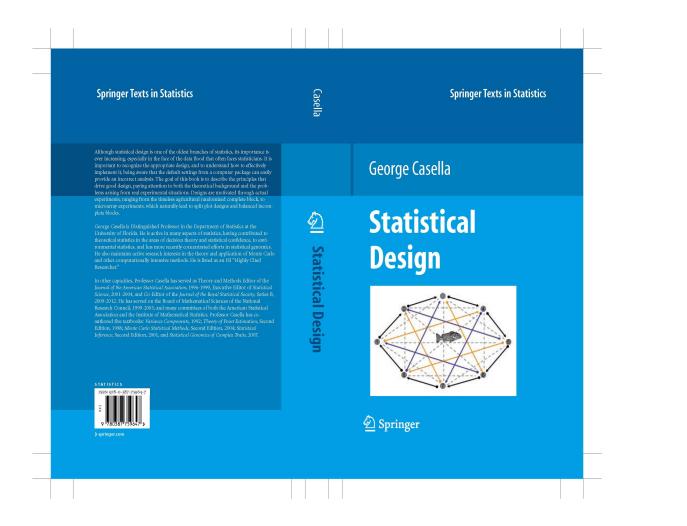
- ► From the Field to the Lab
- ► Getting the Errors Correct
- ► Revisiting the Field and the Lab
- ► Replication True and Technical
- ► BIBDs and Their Variations
- ► Splitting the Plot
- Lightning Round
- ► Conclusions

- There is nothing here that your don't already know
- (or knew)
- but maybe not in this context

Overview

From R. A. Fisher to Microarrays

Overview

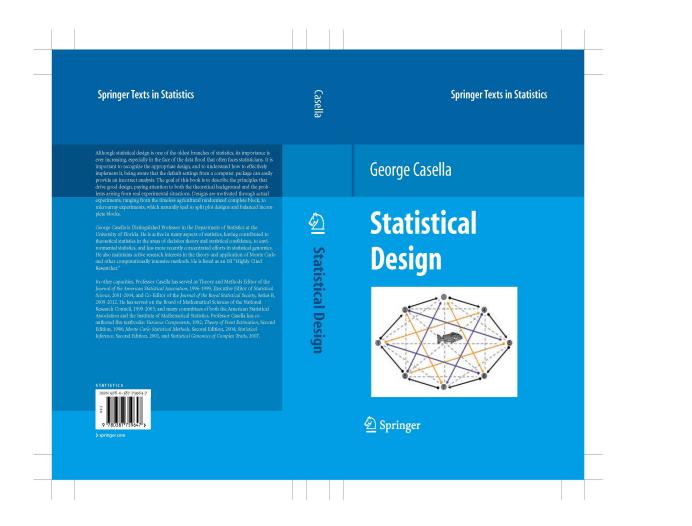


This is stuff I learned when writing this

▷ Shameless Advertising

From R. A. Fisher to Microarrays

Overview



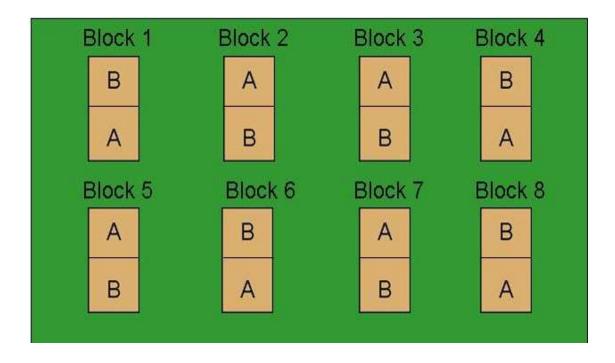
This is stuff I learned when writing this

Shameless Advertising

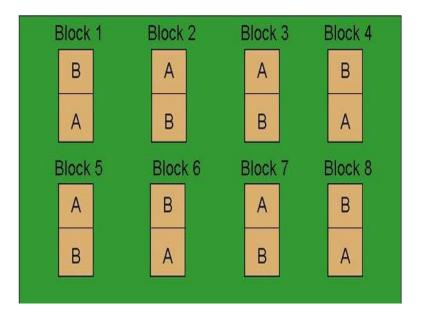
- ► Getting the Errors Correct
- ► Revisiting the Field and the Lab
- ► Replication True and Technical
- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

A Classic Field Experiment

► The Field Plot Design might be



Analysis



Source	df
Blocks	7
Treatments	1
$T \times B$	7

 H_0 : No Treatment Effect

 $F = \frac{\mathsf{MS}(\mathsf{Trts})}{\mathsf{MS}(\mathsf{T} \times \mathsf{B})}$

The Denominator

- ► Although we talk of tests here
- ► It is all about the denominator

⊳lf

$$F = \frac{\mathsf{MS}(\mathsf{Trts})}{\mathsf{MS}(\mathsf{T} \times \mathsf{B})}$$

▷ A confidence interval on treatment differences is $\operatorname{Trt}_i - \operatorname{Trt}_j \in \overline{Y}_i - \overline{Y}_j \pm t\sqrt{\operatorname{MS}(\mathsf{T} \times \mathsf{B})}$

Where t is a t cutoff with $MS(T \times B)$ degrees of freedom

The Denominator

► Although we talk of tests here

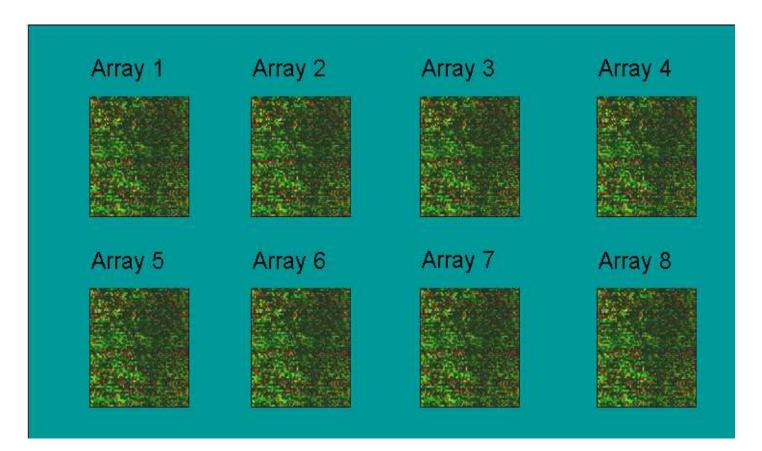
► It is all about the denominator ▷ If $F = \frac{MS(Trts)}{MS(T \times B)}$

 $\triangleright A \text{ confidence interval on treatment differences is}$ $\mathsf{Trt}_i - \mathsf{Trt}_j \in \bar{Y}_i - \bar{Y}_j \pm t \sqrt{\mathsf{MS}(\mathsf{T} \times \mathsf{B})}$

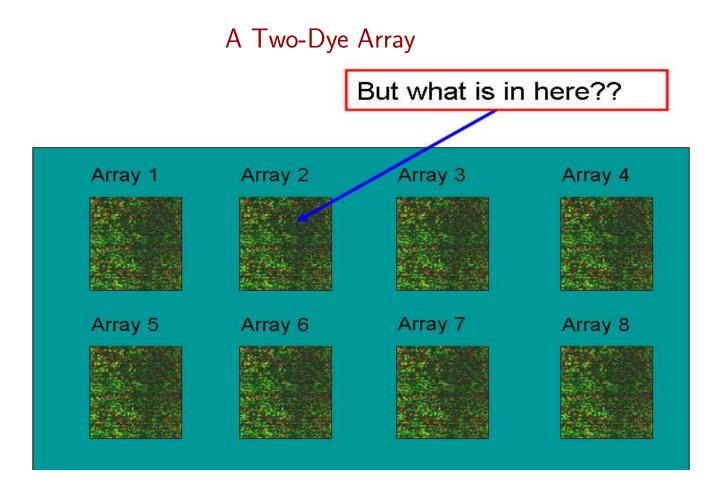
• Where t is a t cutoff with $MS(T \times B)$ degrees of freedom

A (Now) Classic Microarray Experiment

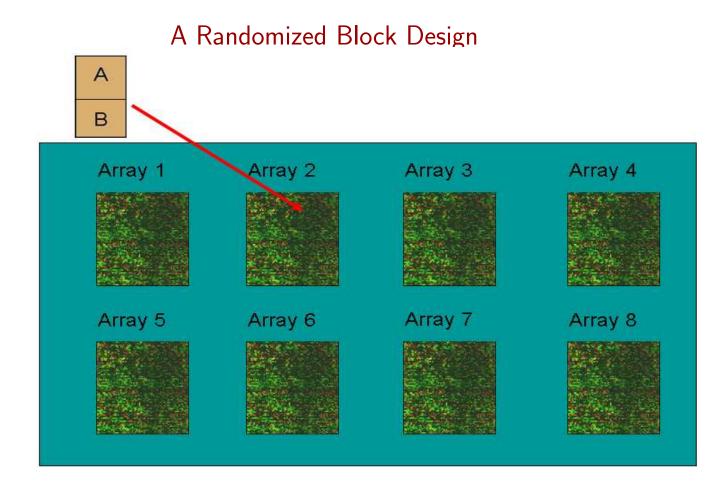
► The Microarray Design might be



~	~ 11
George	Casella
George	Cuscila



▷ The treatment comparisons!



▷ Look familiar?

From R. A. Fisher to Microarrays

Array 1 Array 5 Array 5	Array 2 A A Array 6	Array 3 Array 7 Array 7	Array 4 A Array 8
Block 1 B A Block 5 A B	Block 2 A B Block 6 B A	Block 3 A B Block 7 A B	Block 4 A Block 8 B A

Source	df
Blocks	7
Treatments	1
$T \times B$	7

 H_0 : No Treatment Effect

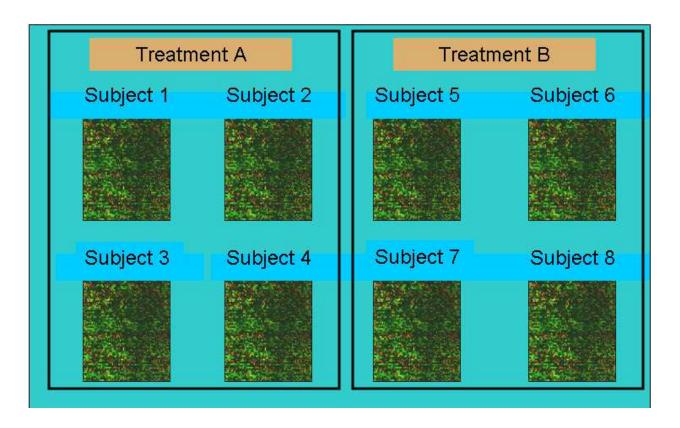
 $F = \frac{\mathsf{MS}(\mathsf{Trts})}{\mathsf{MS}(\mathsf{T} \times \mathsf{B})}$

"Get it right for one gene"

Two-Dye Systems

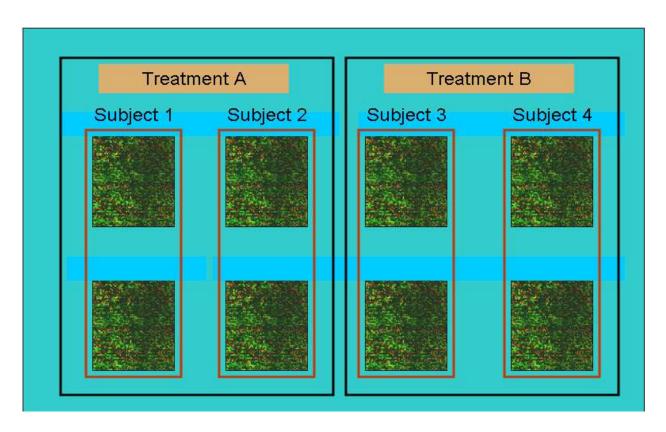
- ► A two-dye system
 - \triangleright Leads to a blocking design, with blocks = subjects
 - Each block can have two treatments
 - ▷ Error term is from the Treatment × Subject Interaction
- ► Oligo arrays (Affymetrix) are a bit different.....

A Single Dye System



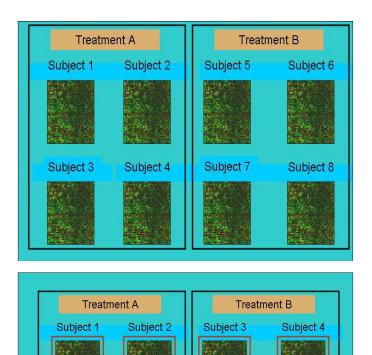
George Casella

Avoid This Mistake



► A nested design - lost degrees of freedom

From R. A. Fisher to Microarrays



Oneway

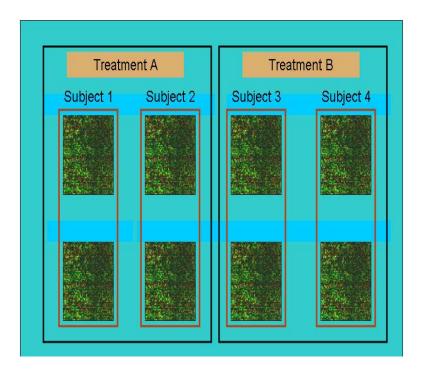
Source	df
Treatments	1
Subjects (in Treatments)	6

Nested	
Source	df
Treatments	1
Subjects (in Treatments)	2
Arrays (in Subjects)	4

 $\mathsf{Error}\;\mathsf{df}\;\mathsf{in}\;\frac{\mathsf{Red}}{\mathsf{Red}}$

~	~ .	
George	Casel	la

Analysis of the Nested Design



Source	df
Treatments	1
Subjects (in Treatments)	2
Arrays (in Subjects)	4

- ► These are Technical Reps
- ► They measure Array Variability
- ► Useless for Treatment Variability

George	Casella
George	Casella

Design and Analysis

- ► Remember We are talking of Design, not Analysis
- ▷ We can design for one gene
- ▷ Analysis is a bit more complicated
- ▷ Often need to consider all (or a group of) genes
- But a good design always helps the analysis
- Also this talk is not just about microarrays
 - ▷ It is about Design Principles
 - ▷ Application in Life Sciences, Social Sciences, etc...

Design and Analysis

- ► Remember We are talking of Design, not Analysis
- ▷ We can design for one gene
- ▷ Analysis is a bit more complicated
- ▷ Often need to consider all (or a group of) genes
- ► But a good design always helps the analysis
- Also this talk is not just about microarrays
 It is about Design Principles
 Application in Life Sciences. Social Sciences. et al.

Design and Analysis

- ► Remember We are talking of Design, not Analysis
- ▷ We can design for one gene
- ▷ Analysis is a bit more complicated
- ▷ Often need to consider all (or a group of) genes
- ► But a good design always helps the analysis
- Also this talk is not just about microarrays
 - ▷ It is about Design Principles
 - ▷ Application in Life Sciences, Social Sciences, etc...

- ► From the Field to the Lab
- Getting the Errors Correct
- ► Revisiting the Field and the Lab
- ► Replication True and Technical
- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

WWSD

- ► OR, why do I need statistics when I have a computer?
- ► Watch out for the default analysis
- ► Even more scary when the computer becomes the teacher!
- ▷ This is not the computer's fault
- ▷ We need to get the correct error term!

WWSD

- ► OR, why do I need statistics when I have a computer?
- ► Watch out for the default analysis
- ► Even more scary when the computer becomes the teacher!
- This is not the computer's fault
- ▷ We need to get the correct error term!

WWSD

- ► OR, why do I need statistics when I have a computer?
- ► Watch out for the default analysis
- ► Even more scary when the computer becomes the teacher!
- ▷ This is not the computer's fault
- ▷ We need to get the correct error term!

RCB models

► A "no interaction" RCB model

$$\begin{split} Y_{ij} &= \mu + \tau_i + \beta_j + \varepsilon_{ij}, \quad i = 1, \dots, t, \quad j = 1, \dots, b, \\ \tau_i &= \text{Treatments} \\ \beta_j &= \text{Blocks} \end{split}$$

(1)
$$\varepsilon_{ij} \sim \text{iid } N(0, \sigma_{\varepsilon}^2)$$
,
(2) β_1, \dots, β_b , are iid $N(0, \sigma_{\beta}^2)$,
(3) Everything is independent.

RCB models

► An "interaction" RCB model

$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \varepsilon_{ijk},$$

$$i = 1, \dots, t, \quad j = 1, \dots, b, \quad k = 1, \dots, r,$$

(1)
$$\varepsilon_{ijk} \sim N(0, \sigma^2)$$
,
(2) β_1, \dots, β_b , $\sim N(0, \sigma_\beta^2)$,
(3) $(\tau\beta)_{11}, \dots, (\tau\beta)_{tb}$, are $N(0, \sigma_{\tau\beta}^2)$,
(4) Everything is independent

Interactions in RCB models

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij} \qquad \text{or} \qquad Y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \varepsilon_{ijk}$$

► Are These Really Different Models?

► Some Think So

Some Textbooks Think So

As Seen in Some Textbooks

No interaction RCB model		Interaction RCB model	
Source	df	Source	df
Blocks Treatments <mark>Residual</mark>	b-1 t-1 (b-1)(t-1)	Blocks Treatments Interaction Error	b-1 t-1 (b-1)(t-1) bt(r-1)

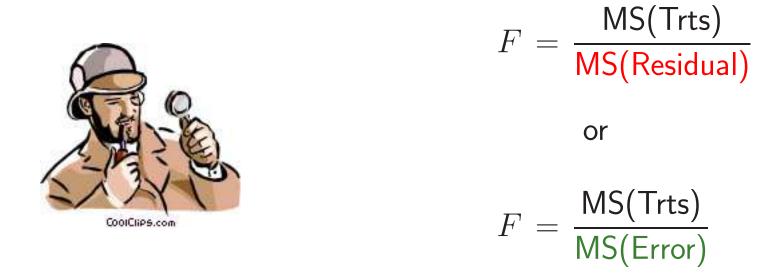
 H_0 : No Treatment Effect

 H_0 : No Treatment Effect

$$F = \frac{MS(Trts)}{MS(Error)}$$
 or $F = \frac{MS(Trts)}{MS(Pooled)}$

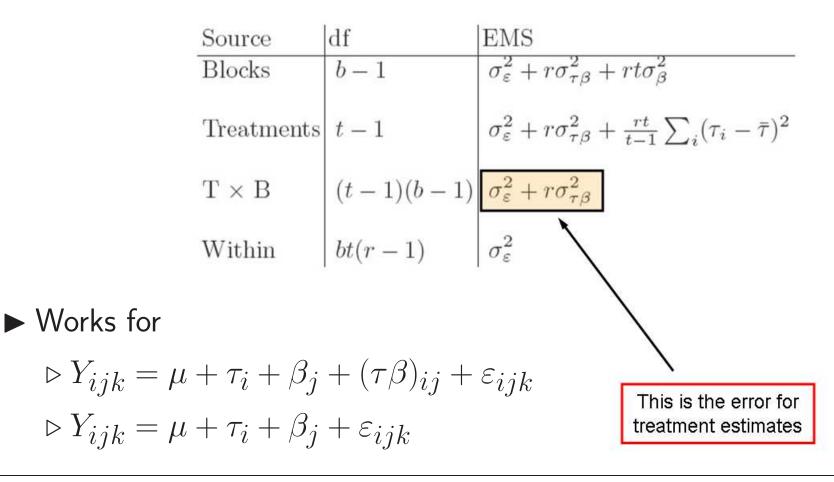
$$F = \frac{\mathsf{MS}(\mathsf{Trts})}{\mathsf{MS}(\mathsf{Residual})}$$

"The case of the jumping denominator"



▶ If the model changes does the truth change? ▷ No interaction model ⇒ No interaction!

Expected Mean Squares - Randomized Complete Blocks



Fisher knew the correct errors

► Fisher's Advice:

"We shall need to judge of the magnitude of the differences introduced by testing our treatments upon the different plots by the discrepancies between the performances of the same treatment in different blocks."

R. A. Fisher The Design of Experiments, Section 26

- ► From the Field to the Lab
- ► Getting the Errors Correct
- Revisiting the Field and the Lab
- ► Replication True and Technical
- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

Revisiting the Field and the Lab

- ► Alfalfa Variety Trials
 - ▷ Six Blocks
 - ▷ Four Varieties
 - \triangleright Three Plants/ Variety/Block
- ► Varieties
 - \triangleright Ladak
 - \triangleright Narragansett
 - \triangleright DuPuits
 - \triangleright Flamand
- ► Objective: Increase Yield

- Microarray Experiment
 - Six Subjects
 - ▷ Four Treatments
 - Three Arrays/Trt/Subject
- Treatment to Stem CellsControl
 - ▷ Chemical
 - ▷ GFP(Green Flor. Protein)
 - \triangleright GFP+transplant
- ► Convert Stem Cells to Neurons

Revisiting the Field and the Lab

- ► Alfalfa Variety Trials
 - \triangleright Six Blocks
 - ▷ Four Varieties
 - ▷ Three Plants/ Variety/Block
- ► Varieties
 - \triangleright Ladak
 - \triangleright Narragansett
 - \triangleright DuPuits
 - \triangleright Flamand
- ► Objective: Increase Yield

- Microarray Experiment
 - ▷ Six Subjects
 - ▷ Four Treatments
 - ▷ Three Arrays/Trt/Subject
- ► Treatment to Stem Cells
 - ▷ Control
 - ▷ Chemical
 - ▷ GFP(Green Flor. Protein)
 - $\triangleright \mathsf{GFP}{+}\mathsf{transplant}$
- Convert Stem Cells to Neurons

From R. A. Fisher to Microarrays

Alfalfa Variety Trial					Microa	rray S [.]	tem C	ell		
			Blo	cks				Subj	ects	
		1	2	•••	6		1	2	•••	
	1	y_{111}	y_{121}	•••	y_{161}	1	y_{111}	y_{121}		Į
		y_{112}	y_{122}	•••	y_{162}		y_{112}	y_{122}	•••	Į
		y_{113}	y_{123}	• • •	y_{163}		y_{113}	y_{123}	•••	Į
Varieties		:	:	:	:	Treatments	:	:	:	
	4	y_{411}	y_{421}	•••	y_{461}	4	y_{411}	y_{421}		ĩ
		y_{412}	y_{422}	•••	y_{462}		y_{412}	y_{422}	•••	1
		y_{413}	y_{423}	•••	y_{463}		y_{413}	y_{423}	•••	

		Mean Sq			
		12.40			
	15		1.88		
Within					Within

			Mean Sq		
			0.19 4.79	17.44	
	15				
Within		15.84			

George	Casella	
George	Casena	

From R. A. Fisher to Microarrays

Alfalfa Variety Trial					Microarray Stem Cell					
			Blo	cks				Sub	ects	
		1	2	•••	6		1	2	•••	
	1	y_{111}	y_{121}	•••	y_{161}	1	y_{111}	y_{121}		
		y_{112}	y_{122}	•••	y_{162}		y_{112}	y_{122}	•••	
		y_{113}	y_{123}	• • •	y_{163}		y_{113}	y_{123}	•••	
Varieties		:	÷	:	:	Treatments	:	÷	:	
	4	y_{411}	y_{421}	•••	y_{461}	4	y_{411}	y_{421}		
		y_{412}	y_{422}	•••	y_{462}		y_{412}	y_{422}	•••	
		y_{413}	y_{423}	•••	y_{463}		y_{413}	y_{423}	•••	

_	Source	df	Sum Sq	Mean Sq	F	p	Source	df	Sum Sq	Mean Sq	F
	Block	5	3.98	1.33			Subjects	5	0.95	0.19	
	Variety	3	37.20	12.40	26.07	< .0001	Treatments	3	14.37	4.79	17.44
	$V \times B$	15	4.28	0.48	1.88	0.050	$T \times S$	15	4.12	0.27	39.81
-	Within	48	8.10	0.25			Within	48	15.84	0.33	0.01

Coorgo	Cocol	16
George	Caser	Ja

p

< .0001

< .0001

Revisiting the Field and the Lab

Source	df	Sum Sq	Mean Sq	F	p	S	ource	df	Sum Sq	Mean Sq	F	p
Block Variety	5 3	3.98 37.20	1.33 12.40	26.07	< .0001		ubjects reatments	5 3	0.95 14.37	0.19 4.79	17.44	< .0001
$V \times B$	15	4.28		1.88	0.050		\times S	15	4.12	0.27	39.81	< .0001 < .0001
Within	48	8.10	0.25			V	Vithin	48	15.84	0.33	0.01	

Better Design Strategy:

Increase the Number of Blocks

▷ subjects

▷ biological reps

 \triangleright arrays

What to do
with all of
those Within
Degrees of Freedom?

Revisiting the Field and the Lab

Source	df	Sum Sq	Mean Sq	F	p
Block	5	3.98	1.33		
Variety	3	37.20	12.40	26.07	< .0001
$V \times B$	15	4.28	0.48	1.88	0.050
Within	48	8.10	0.25		

	Source	df	Sum Sq	Mean Sq	F	p
_	Subjects Treatments T \times S Within	5 3 15 48	0.95 14.37 4.12 15.84	0.19 4.79 0.27 0.33	17.44 39.81 0.01	< .0001 < .0001

Testing H_0 : $\sigma^2_{\tau\beta} = 0$?

Pooling? – Better to avoid

► Maybe

 \triangleright Type II error \downarrow

 \triangleright Type I error \uparrow

- ► From the Field to the Lab
- ► Getting the Errors Correct
- ► Revisiting the Field and the Lab
- Replication True and Technical
- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

► For the RCB model

$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \varepsilon_{ijk},$$

▷ we have

$$\operatorname{Corr}(\varepsilon_{ijk}, \varepsilon_{i'jk'}) = \begin{cases} \rho_{\varepsilon} & \text{for technical replication} \\ 0 & \text{for true replication.} \end{cases}$$

\triangleright which affects the error term

► For the RCB model

$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \varepsilon_{ijk},$$

⊳ we have

$$\operatorname{Corr}(\varepsilon_{ijk}, \varepsilon_{i'jk'}) = \begin{cases} \rho_{\varepsilon} & \text{for technical replication} \\ 0 & \text{for true replication.} \end{cases}$$

▷ which effects the error term

► Look at the Expected Mean Squares

► RCB anova - technical replication

Source	df	EMS
Blocks	b - 1	$\sigma_{\varepsilon}^{2}[1+(r-1)\rho_{\varepsilon}] + r\sigma_{\tau\beta}^{2} + rt\sigma_{\beta}^{2}$
Treatments	t - 1	$\sigma_{\varepsilon}^{2}[1+(r-1)\rho_{\varepsilon}] + r\sigma_{\tau\beta}^{2} + \frac{rt}{t-1}\sum_{i}(\tau_{i}-\bar{\tau})^{2}$
		$\sigma_{\varepsilon}^2 [1+(r-1)\rho_{\varepsilon}] + r\sigma_{\tau\beta}^2$
Within	bt(r-1)	$(1- ho_arepsilon)\sigma_arepsilon^2$

► Treatment Test OK

► RCB anova - technical replication

Source	df	EMS
Blocks	b - 1	$\sigma_{\varepsilon}^{2}[1+(r-1)\rho_{\varepsilon}] + r\sigma_{\tau\beta}^{2} + rt\sigma_{\beta}^{2}$
Treatments	t - 1	$\sigma_{\varepsilon}^{2}[1+(r-1)\rho_{\varepsilon}] + r\sigma_{\tau\beta}^{2} + \frac{rt}{t-1}\sum_{i}(\tau_{i}-\bar{\tau})^{2}$
$T \times B$	(t-1)(b-1)	$\sigma_{\varepsilon}^2 [1 + (r-1)\rho_{\varepsilon}] + r\sigma_{\tau\beta}^2$
Within	bt(r-1)	$(1- ho_arepsilon)\sigma_arepsilon^2$

Cannot test the interaction - often an important test

Example

> Microarray Experiment on Unirradiated vs. Irradiated Cells

Distribution Twoway crossed treatment design

	Treatment		
	U	I	
	x	x	
Line 1	x	x	
	x	x	
Line 2	x	x	

Independent Replication?

Technical Replication?

Cell Line Anova

\blacktriangleright Technical Replication \Rightarrow No interaction test in RCB

			True Rep	True Rep		Technical Rep	
	Treat	ment	Source	df	Source	df	
	U		Blocks(Lines)	1	Blocks(Lines)	1	
	x	x	Treatments(U/I)	1	Treatments(U/I)	1	
Line 1	x	x	$L \times T$	1	$L \times T$	1	
	x	x	Within	4	Subsampling	4	
Line 2	x	x	Total	7	Total	7	

Subsampling = Pseudoreplication = Technical Replication

- ► From the Field to the Lab
- ► Getting the Errors Correct
- ► Revisiting the Field and the Lab
- ► Replication True and Technical
- BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

► Balanced Incomplete Block Designs (BIBD)

- ▷ Are needed when all treatments cannot fit in one block
- > Arise naturally in microarray experiments

► Some Examples

- \triangleright Two-Dye System \Rightarrow Block of Size 2
- ▷ GCP Example Treatment applied to cells Subject is block
- Other Technological advances

- ► Balanced Incomplete Block Designs (BIBD)
- ▷ Are needed when all treatments cannot fit in one block
- > Arise naturally in microarray experiments
- ► Some Examples
- ightarrow Two-Dye System \Rightarrow Block of Size 2
- ▷ GCP Example Treatment applied to cells Subject is block
- Other Technological advances

► The new Agilent arrays

- "Mulitplex formats" enable hybridization of multiple samples on a single chip"
- ► Available formats
 - ▷ 1x244K
 - ▷ 2x105K
 - ⊳ 4x44K
 - ⊳ 8x15K

► A Statistical Design Nightmare?

► The new Agilent arrays



- "Mulitplex formats enable hybridization of multiple samples on a single chip"
- ► Available formats
 - ⊳ 1x244K
 - ⊳ 2x105K
 - \triangleright 4x44K
 - ⊳ 8x15K

Properties of Balanced Incomplete Block Designs

$$\begin{split} Y_{ij} &= \mu + \tau_i + \beta_j + \varepsilon_{ij}, \\ \triangleright \, \varepsilon_{ij} \sim \, \text{iid} \, \, \mathsf{N}(0, \sigma_{\varepsilon}^2) \, \, . \\ \triangleright \, \beta_1, \dots, \beta_b, \text{ are iid } \, \, \mathsf{N}(0, \sigma_{\beta}^2) \end{split}$$

► Treatment contrasts are free of block effects

$$\operatorname{Var}\left(\sum_{i=1}^{t} a_i \hat{\tau}_i\right) = \frac{k}{\lambda t} \sigma_{\varepsilon}^2 \sum_{i=1}^{t} a_i^2.$$

$$\triangleright$$
 no σ_{β}^2

Properties of Balanced Incomplete Block Designs

$$\begin{split} Y_{ij} &= \mu + \tau_i + \beta_j + \varepsilon_{ij}, \\ \triangleright \, \varepsilon_{ij} \sim \, \text{iid} \, \, \mathsf{N}(0, \sigma_{\varepsilon}^2) \, \, . \\ \triangleright \, \beta_1, \dots, \beta_b, \text{ are iid } \, \, \mathsf{N}(0, \sigma_{\beta}^2) \end{split}$$

► Treatment contrasts are free of block effects

$$\operatorname{Var}\left(\sum_{i=1}^{t} a_i \hat{\tau}_i\right) = \frac{k}{\lambda t} \sigma_{\varepsilon}^2 \sum_{i=1}^{t} a_i^2.$$

$$\triangleright$$
 no σ_{β}^2

What can go wrong?

- ► NASA Experiment on Substantiality of Crops (Potatoes)
- ▷ Two Factors: Photoperiod (P), and bioactive Tuber Inducing Factor solution (TIF)
- ▷ Each at two levels = Four Treatments
- $\triangleright \texttt{Agilent}$ two-dye microarray chip $\Rightarrow \textsf{BIBD}$
- "I ran all four pairs"

▶ But $\binom{4}{2} = 6!!!$

What can go wrong?

- ► NASA Experiment on Substantiality of Crops (Potatoes)
- ▷ Two Factors: Photoperiod (P), and bioactive Tuber Inducing Factor solution (TIF)
- ▷ Each at two levels = Four Treatments
- $\triangleright \texttt{Agilent}$ two-dye microarray chip $\Rightarrow \textsf{BIBD}$
- "I ran all four pairs"

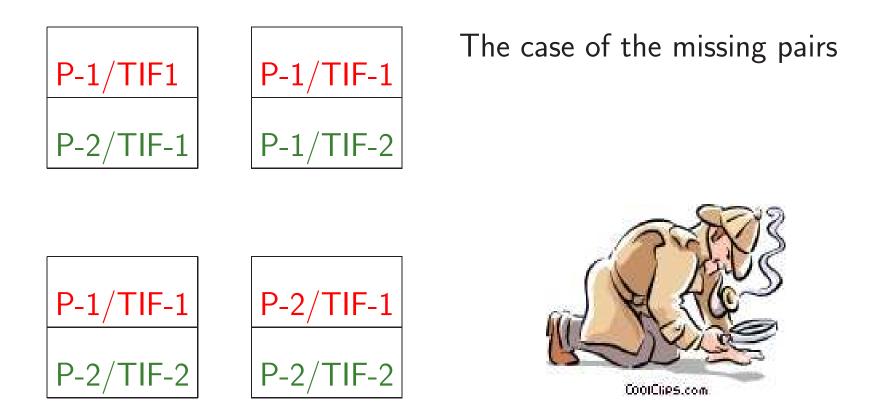
▶ But $\binom{4}{2} = 6!!!$

What can go wrong?

- ► NASA Experiment on Substantiality of Crops (Potatoes)
- ▷ Two Factors: Photoperiod (P), and bioactive Tuber Inducing Factor solution (TIF)
- ▷ Each at two levels = Four Treatments
- \triangleright Agilent two-dye microarray chip \Rightarrow BIBD
- "I ran all four pairs"

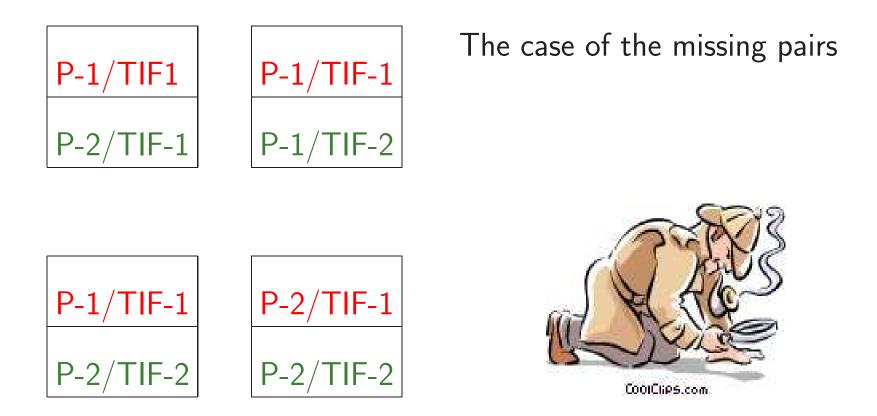
▶ But
$$\binom{4}{2} = 6!!!$$

► He ran all four pairs



Damage Control - confounding - contrasts have block effects

► He ran all four pairs

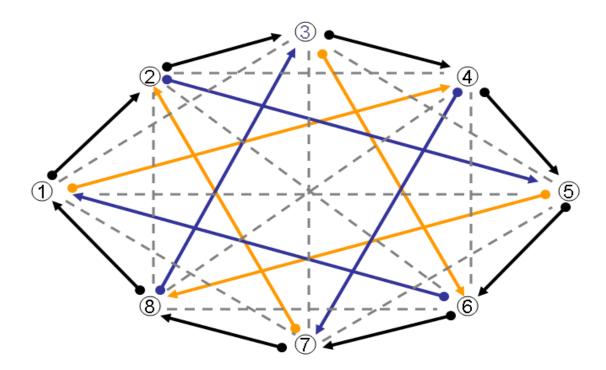


Damage Control - confounding - contrasts have block effects

George	Casella
GUUIGU	Casena

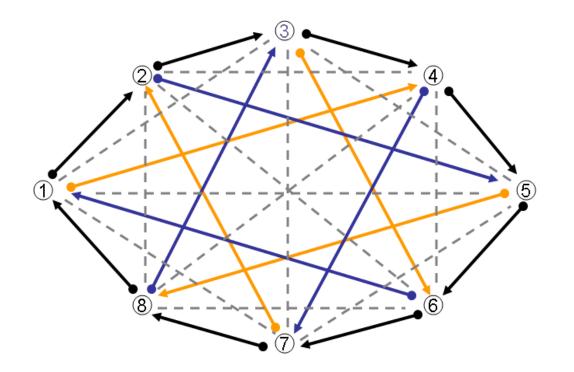
Loops, Augmented Loops, and BIBDs

▷ *Persea* (Avocado) Experiment-Eight Different Tissues



▷ Reducing Some Variances

Persea (Avocado) Experiment

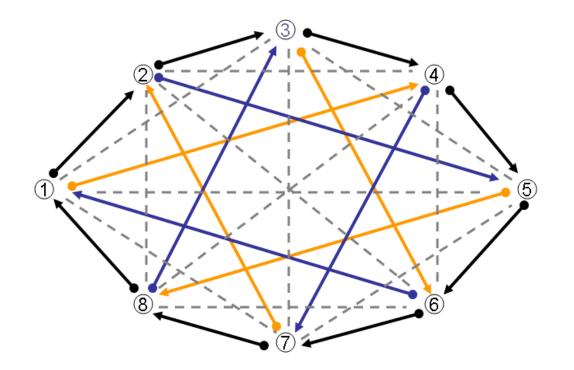


Outer Black Lines =Loop Design

Outer Black Lines + Orange and Blue =Augmented Loop

All Lines =BIBD

Persea (Avocado) Experiment

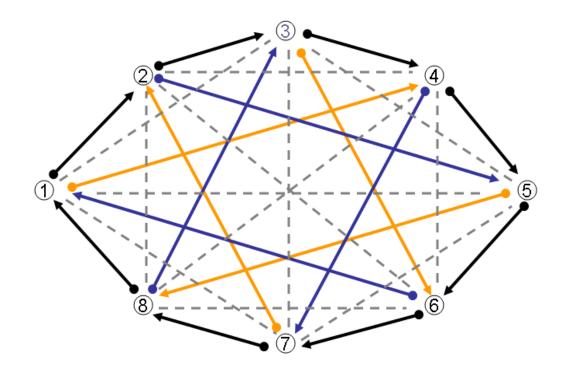


Outer Black Lines =Loop Design

Outer Black Lines + Orange and Blue =Augmented Loop

All Lines =BIBD

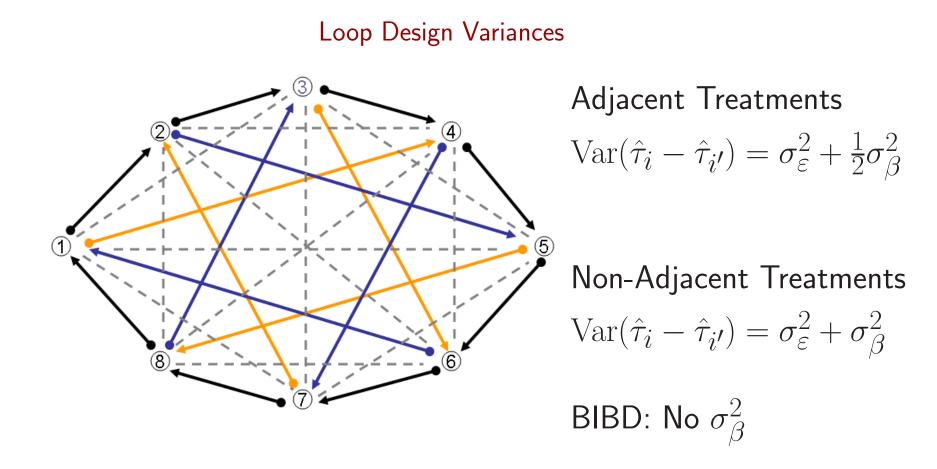
Persea (Avocado) Experiment



Outer Black Lines =Loop Design

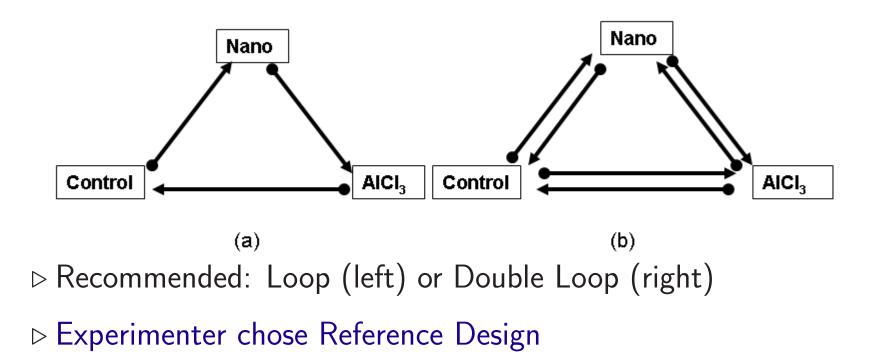
Outer Black Lines + Orange and Blue =Augmented Loop

All Lines =BIBD

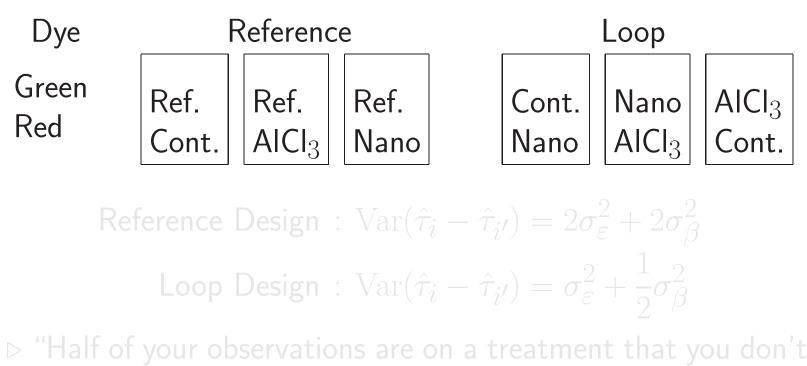


A Word About Reference Designs

► Effect of Aluminum on Zebrafish

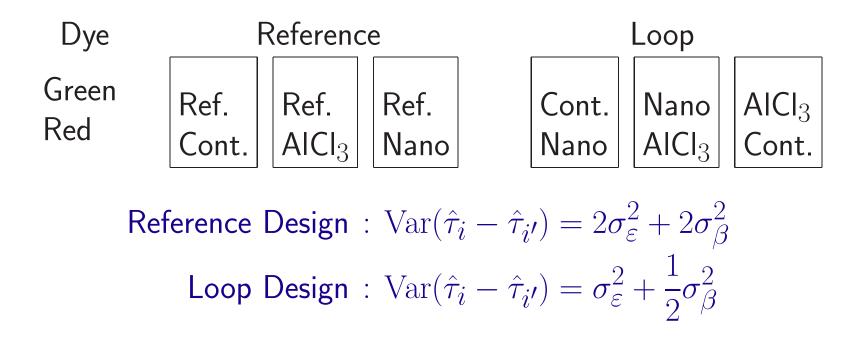


Reference or Loop?



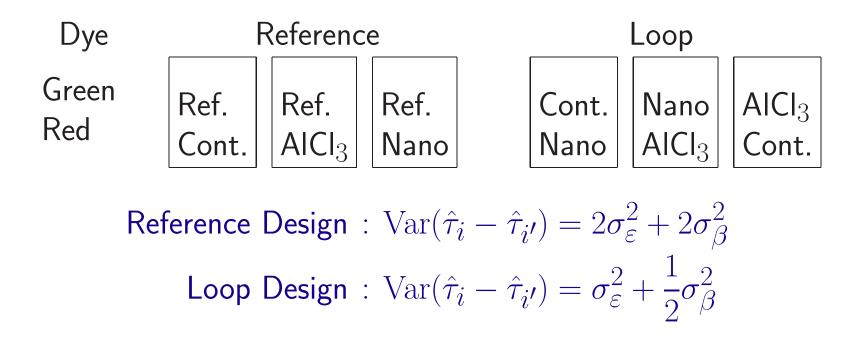
care about"

Reference or Loop?



"Half of your observations are on a treatment that you don't care about"

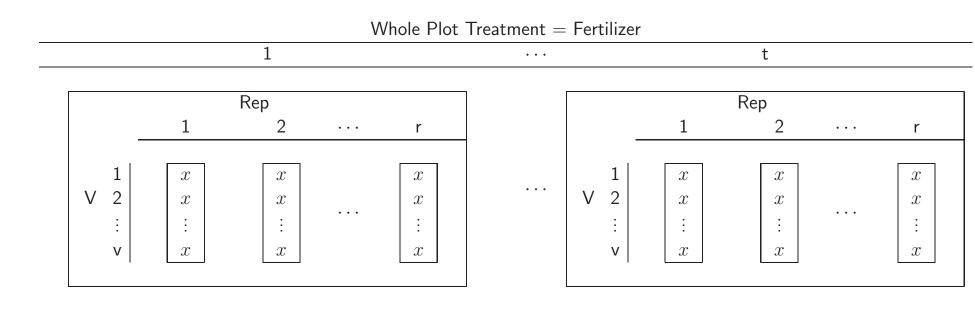
Reference or Loop?



"Half of your observations are on a treatment that you don't care about"

- ► From the Field to the Lab
- ► Getting the Errors Correct
- ► Revisiting the Field and the Lab
- ► Replication True and Technical
- ► BIBDs and Their Variations
- Splitting the Plot
- ► Lightning Round
- ► Conclusions

Split Plots - Agricultural Experiment

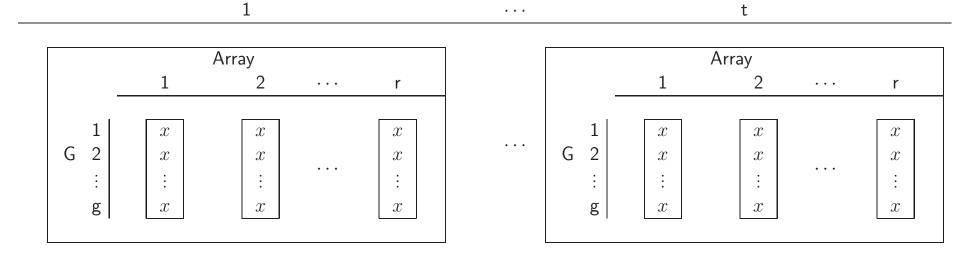


▷ Fertilizer applied to Whole Plots

 \triangleright Varieties within Whole Plots = Split Plots

Split Plots - Microarray Experiment

Whole Plot Treatment = Disease Status



▷ Arrays= Whole Plots

 \triangleright Gene within Arrays = Split Plots

Split Plot Anova

Source	df	EMS
Whole Plot Trt Arrays (in Whole Plots)	t-1 t(r-1)	$ \begin{vmatrix} \sigma_{\delta}^2 + g\sigma_{\varepsilon}^2 + \frac{rg}{t-1}\sum_i \tau_i^2 \\ \sigma_{\delta}^2 + g\sigma_{\varepsilon}^2 \end{vmatrix} $
Genes (Split Plot Trt) Genes $ imes$ Whole Plot Trt	g-1 (g-1)(t-1)	$ \begin{array}{c} \sigma_{\delta}^{2} + \frac{rt}{g-1} \sum_{k} \gamma_{k}^{2} \\ \sigma_{\delta}^{2} + \frac{r}{(g-1)(t-1)} \sum_{ik} (\tau\gamma)_{ik}^{2} \\ \sigma_{\delta}^{2} \end{array} $
Error (Split Plot Trt \times Replication in Whole Plots)	t(g-1)(r-1)	$\begin{bmatrix} \sigma_{\delta}^{2} & (g-1)(t-1) & 2ik(t-1)ik \\ \sigma_{\delta}^{2} & \end{bmatrix}$
Total	grt-1	

▷ Interest is at Split Plot level

 \triangleright Genes \times Whole Plot Trt = Differential Expression

Split Plot comparisons have smaller error
 Pooling Genes - Analysis Question

Split Plot Anova

Source	df	EMS
Whole Plot Trt	t-1	$\sigma_{\delta}^2 + g\sigma_{\varepsilon}^2 + \frac{rg}{t-1}\sum_i \tau_i^2$
Arrays (in Whole Plots)	t(r-1)	$ \begin{array}{c} \sigma_{\delta}^{2} + g\sigma_{\varepsilon}^{2} + \frac{rg}{t-1}\sum_{i}\tau_{i}^{2} \\ \sigma_{\delta}^{2} + g\sigma_{\varepsilon}^{2} \end{array} $
Genes (Split Plot Trt) Genes $ imes$ Whole Plot Trt	g-1 (g-1)(t-1)	$\begin{vmatrix} \sigma_{\delta}^2 + \frac{rt}{g-1} \sum_k \gamma_k^2 \\ \sigma_{\delta}^2 + \frac{r}{(g-1)(t-1)} \sum_{ik} (\tau\gamma)_{ik}^2 \\ \sigma_{\delta}^2 \end{vmatrix}$
Error (Split Plot Trt $ imes$ Replication in Whole Plots)	t(g-1)(r-1)	σ_{δ}^2
Total	grt-1	

▷ Interest is at Split Plot level

 \triangleright Genes \times Whole Plot Trt = Differential Expression

Split Plot comparisons have smaller error

▷ Pooling Genes - Analysis Question

Treatment 1 t . . . Array Array 2 ... 2 ... 1 1 r r $x \\ x$ $\begin{array}{ccc} x & x \\ x & x \end{array}$ $\begin{array}{ccc} x & x \\ x & x \end{array}$ $egin{array}{ccc} x & x \ x & x \end{array}$ 1 $x \\ x$ 1 . . . Gene 2 $\begin{array}{ccc} x & x \\ x & x \end{array}$ $\begin{array}{ccc} x & x \\ x & x \end{array}$ Gene 2 $\begin{array}{ccc} x & x \\ x & x \end{array}$ $\begin{array}{ccc} x & x \\ x & x \end{array}$ ÷ ÷ $\begin{array}{ccc} x & x \\ x & x \end{array}$ $\begin{array}{ccc} x & x \\ x & x \end{array}$ $\begin{array}{ccc} x & x \\ x & x \end{array}$ xxg g

Splitting Even More

- \triangleright Probes nested within Genes
- \triangleright Probe \times Gene Interaction \Rightarrow SNP?
- > Split Split Plot comparisons

- ► From the Field to the Lab
- ► Getting the Errors Correct
- ► Revisiting the Field and the Lab
- ► Replication True and Technical
- ► BIBDs and Their Variations
- ► Splitting the Plot
- Lightning Round
- ► Conclusions

Pooling

► Should we pool RNA of Subjects?

$$\sigma^2 = \sigma_B^2 + \sigma_W^2$$
 Between + Within Variance

► Variance of Treatment Mean

$$\operatorname{Var}(\bar{Y}_i) = \frac{1}{rp} \left(\sigma_B^2 + \frac{\sigma_W^2}{s} \right) \,.$$

 $\triangleright r =$ True Rep, p =Pooling, s =Technical Rep

Pooling

► Should we pool RNA of Subjects?

$$\sigma^2 = \sigma_B^2 + \sigma_W^2$$
 Between + Within Variance

► Variance of Treatment Mean

$$\operatorname{Var}(\bar{Y}_i) = \frac{1}{rp} \left(\sigma_B^2 + \frac{\sigma_W^2}{s} \right).$$

 $\triangleright r =$ True Rep, p =Pooling, s =Technical Rep

Conservative Tests

Completely Randomized Design

Source	df	EMS
Treatment T	t-1	$\sigma^2 + \frac{rg}{t-1} \sum_i \tau_i^2$
Treatment G	g - 1	$\sigma^2 + \frac{rt}{g-1} \sum_j \gamma_i^2$
T imes G	(t-1)(g-1)	$\sigma^2 + \frac{r}{(t-1)(g-1)} \sum_{ij} (\tau \gamma)_{ij}^2$
Within	tg(r-1)	σ^2

> Lower Power

Lower Type I Error

Conservative Tests

Completely Randomized Design

Source	df	EMS
Treatment T	t-1	$\sigma^2 + \frac{rg}{t-1} \sum_i \tau_i^2$
Treatment G	g - 1	$\sigma^2 + \frac{rt}{g-1} \sum_j \gamma_i^2$
T imes G	(t-1)(g-1)	$\sigma^2 + \frac{r}{(t-1)(g-1)} \sum_{ij} (\tau \gamma)_{ij}^2$
Within	tg(r-1)	σ^2

⊳ Lower Power

▷ Lower Type I Error

Anti-Conservative Tests

► Randomized Complete Block Design

Source	df	EMS
Blocks	b - 1	$\sigma_{\varepsilon}^2 + r\sigma_{\tau\beta}^2 + rt\sigma_{\beta}^2$
Treatments	t - 1	$\sigma_{\varepsilon}^2 + r\sigma_{\tau\beta}^2 + \frac{rt}{t-1}\sum_i (\tau_i - \bar{\tau})^2$
$T \times B$	(t-1)(b-1)	$\sigma_{\varepsilon}^2 + r \sigma_{\tau\beta}^2$
Within	bt(r-1)	$\sigma_arepsilon^2$

> Higher Power> Higher Type I Erro

Anti-Conservative Tests

► Randomized Complete Block Design

Source	df	EMS
Blocks	b - 1	$\sigma_{\varepsilon}^2 + r\sigma_{\tau\beta}^2 + rt\sigma_{\beta}^2$
Treatments	t-1	$\sigma_{\varepsilon}^2 + r\sigma_{\tau\beta}^2 + \frac{rt}{t-1}\sum_i (\tau_i - \bar{\tau})^2$
	(t-1)(b-1)	$\sigma_{\varepsilon}^2 + r \sigma_{\tau\beta}^2$
Within	bt(r-1)	$\sigma_arepsilon^2$

▷ Higher Power

▷ Higher Type I Error

- ► From the Field to the Lab
- ► Getting the Errors Correct
- ► Revisiting the Field and the Lab
- ► Replication True and Technical
- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round

- ► From the Field to the Lab ▷Check the Design
- ► Getting the Errors Correct ▷ Che
- ► Revisiting the Field and the Lab ▷ Ag Design = Microarray Design
- ► Replication True and Technical ▷ Identify the Experimental Unit
- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

- ▷ Balance the Blocks
- Using Split Plot Errors
- ▷ Useful Tidbits
- ▷ One More Slide

- ► From the Field to the Lab ⊳Check the Design
- ► Getting the Errors Correct
- ► Replication True and Technical ▷ Identify the Experimental Unit
- BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- Conclusions

- ▶ Revisiting the Field and the Lab ▷ Ag Design = Microarray Design

- ► From the Field to the Lab ⊳Check the Design
- ► Getting the Errors Correct

- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

- ▷ Check the Denominator
- ▶ Revisiting the Field and the Lab ▷ Ag Design = Microarray Design
- ► Replication True and Technical ▷ Identify the Experimental Unit

- ► From the Field to the Lab ▷Check the Design
- Getting the Errors Correct
- ► Revisiting the Field and the Lab ▷ Ag Design = Microarray Design
- ► Replication True and Technical ▷ Identify the Experimental Unit
- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

- ▷ Balance the Blocks
- Using Split Plot Errors

▷ Check the Denominator

- ▷ Useful Tidbits
- ▷ One More Slide

- ► From the Field to the Lab ▷Check the Design
- ► Getting the Errors Correct ▷ Check the Denominator
- ► Revisiting the Field and the Lab ▷ Ag Design = Microarray Design
- ► Replication True and Technical ▷ Identify the Experimental Unit
- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

- ▷ Balance the Blocks
- Using Split Plot Errors
- ▷ Useful Tidbits
- ▷ One More Slide

- ► From the Field to the Lab ▷Check the Design
- ► Getting the Errors Correct ▷ Check the Denominator
- ► Revisiting the Field and the Lab ▷ Ag Design = Microarray Design
- ► Replication True and Technical ▷ Identify the Experimental Unit
- ► BIBDs and Their Variations
- ► Splitting the Plot
- ► Lightning Round
- ► Conclusions

- ▷ Balance the Blocks
- Using Split Plot Errors
- ▷ Useful Tidbits
- ▷ One More Slide

- ► From the Field to the Lab ▷Check the Design
- ► Getting the Errors Correct ▷ Check the Denominator
- ► Revisiting the Field and the Lab ▷ Ag Design = Microarray Design
- ► Replication True and Technical ▷ Identify the Experimental Unit
- ► BIBDs and Their Variations
- ► Splitting the Plot

Using Split Plot Errors

 \triangleright Balance the Blocks

- Lightning Round
- ► Conclusions

- ▷ Useful Tidbits
- ▷ One More Slide

- ► From the Field to the Lab ▷Check the Design
- ► Getting the Errors Correct ▷ Check the Denominator
- ► Revisiting the Field and the Lab ▷ Ag Design = Microarray Design
- ► Replication True and Technical ▷ Identify the Experimental Unit
- ► BIBDs and Their Variations
- ► Splitting the Plot

Using Split Plot Errors

 \triangleright Balance the Blocks

- ► Lightning Round
- ► Conclusions

- ▷ Useful Tidbits
- One More Slide

- ► From the Field to the Lab ▷Check the Design
- ► Getting the Errors Correct ▷ Check the Denominator
- ► Revisiting the Field and the Lab ▷ Ag Design = Microarray Design
- ► Replication True and Technical ▷ Identify the Experimental Unit
- BIBDs and Their Variations
- ► Splitting the Plot

Using Split Plot Errors

 \triangleright Balance the Blocks

- ► Lightning Round
- ► Conclusions

- ▷ Useful Tidbits
- ▷ One More Slide

Thanks

Thank You for Your Attention

casella@ufl.edu

University of Florida Gators!