International Workshop on Statistical Modelling 2007 Barcelona, July 2-6, 2007

Objective Bayesian Model Selection: Some Methods, Some Theory

George Casella Department of Statistics University of Florida casella@ufl.edu

Elías Moreno Department of Statistics University of Granada **F. J. Girón** Department of Statistics University of Malaga

Overview

► Yesterday

 \triangleright Variable Selection Methods

▷ Intrinsic Priors

 \triangleright Stochastic Search Driven by Bayes Factors

► Things We Did Today

▷ Variable Selection Theory: Consistency

▷ Changepoint Problems

► Tomorrow Never Knows Clustering

▷ Conclusions

Objective Bayes Model Selection: Some Methods and Some Theory [2]

Part One: Yesterday

Objective Bayes Model Selection: Some Methods and Some Theory [3]

Variable Selection in Normal Regression Models

► The full model:

Y = Dependent Variable $\{X_1, ..., X_k\} = k \text{ potential explanatory regressors}$

► Every model with regressors

 $\{X_{i_1}, ..., X_{i_q}\}$

is a priori a plausible model for Y.

► 2^{k-1} potential models (intercept always included)

Model Selection as Multiple Hypothesis Testing

- Specify the hypotheses for each model evaluation.
- Evaluate model M by

 $H_0: M =$ candidate model v. $H_A: M =$ reference model.

• For a Bayesian evaluation, the prior distribution should be \circ centered at each H_0 .

 \circ specific to each null model M under consideration.

Reference Model

- The reference model encompasses all other models
 Models need to be nested
 - \triangleright Can do this in two ways
- ► Casella/Moreno (JASA 2006): Encompassing from Above
 - $H_0: M =$ reduced model vs.
 - $H_A: M = \text{ model with all predictors}$
- This tests whether the reduced model explains significant variation

 \rhd Reduced Model \in Full Model

Encompassing

► Casella/Moreno (JASA 2006): Encompassing from Above

 $H_0: M =$ reduced model vs. $H_A: M =$ model with all predictors

This tests whether the reduced model explains significant variation

 \triangleright Candidate Model \in Full Model

► Girón *et al.* (2006): Encompassing from Below $H_0: M =$ intercept-only model This tests whether the vs. reduced model significantly $H_A: M =$ reduced model improves on intercept-only

\triangleright Null Model \in Candidate Model

Objective Bayes Model Selection: Some Methods and Some Theory [7]

Bayes Factors

► Compare

 $M_1: \{f_1(x|\theta_1), \pi_1(\theta_1)\}$ vs. $M_2: \{f_2(x|\theta_2), \pi_2(\theta_2)\}$

► Marginal Distributions

$$M_1 : m_1(x) = \int_{\Theta} f_1(x|\theta_1) \pi_1(\theta_1) \ d\theta$$
$$M_2 : m_2(x) = \int_{\Theta} f_2(x|\theta_2) \pi_2(\theta_2) \ d\theta$$

► Bayes Factor

$$BF = \frac{m_1(x)}{m_2(x)}$$

Objective Bayes Model Selection: Some Methods and Some Theory [8]

Objective Probabilities

► Model Selection \Rightarrow

not confident about any given set of explanatory variables
little prior information on the regression coefficients

► Objective model choice approach is justified.

- Typical default priors are improper, and cannot be used.
 The Bayes factor cannot be determined
- ▶ Intrinsic Priors (Berger/Pericchi 1996) address this problem

Intrinsic Priors

- \blacktriangleright Berger and Pericchi (1996)
 - ▷ Handle the impropriety problem
 - ▷ Provide sensible objective proper priors
- Moreno *et al.* (1998) develop intrinsic priors further
 They show there is an entire class
 They show which one to use

Objective Bayes Model Selection: Some Methods and Some Theory [10]

Intrinsic Priors - Details

► Compare

 $M_1: \{f_1(x|\theta_1), \pi_1^N(\theta_1)\}$ vs. $M_2: \{f_2(x|\theta_2), \pi_2^N(\theta_2)\}$

- ▷ $f_1(x|\theta_1)$ is nested in $f_2(x|\theta_2)$ ▷ $\pi_i^N(\theta_i)$ are the conventional (improper) priors.
- ► We can use a training sample to convert $\pi_i^N(\theta_i)$ into a proper posterior. That is,

$$\pi_i^N(\theta_i | x(\ell)) = \frac{f_i(x(\ell) | \theta_i) \pi_i^N(\theta_i)}{m_i^N(x(\ell))}, \quad i = 1, 2$$

Objective Bayes Model Selection: Some Methods and Some Theory [11]

Intrinsic Priors - Details

► Actually, we use (Moreno 1997),

$$\pi_{2}^{I}(\theta_{2}|\theta_{1}) = \pi_{2}^{N}(\theta_{2}) \mathbb{E}_{x(\ell)|\theta_{2}}^{M_{2}} \left(\frac{f_{1}(x(\ell)|\theta_{1})}{\int_{\Theta_{2}} f_{2}(x(\ell)|\theta_{2})\pi_{2}^{N}(\theta_{2})d\theta_{2}} \right)$$
$$\pi_{1}^{I}(\theta_{1}) = \pi_{1}^{N}(\theta_{1})$$

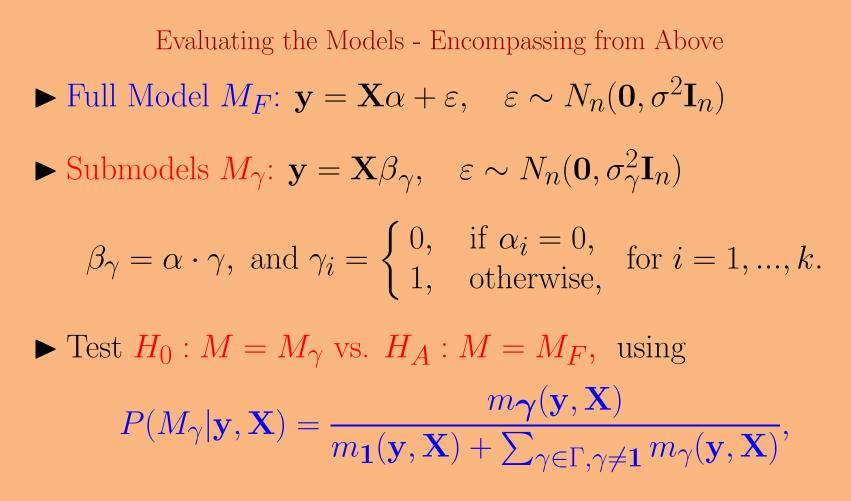
► We average over all training samples

► No data dependence

Objective Bayes Model Selection: Some Methods and Some Theory [12]

Evaluating the Models - Encompassing from Above Full Model M_F : $\mathbf{y} = \mathbf{X}\alpha + \varepsilon$, $\varepsilon \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ **Objective Bayes Model Selection: Some Methods and Some Theory** [13]

Evaluating the Models - Encompassing from Above Full Model M_F : $\mathbf{y} = \mathbf{X}\alpha + \varepsilon$, $\varepsilon \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ Submodels M_γ : $\mathbf{y} = \mathbf{X}\beta_\gamma$, $\varepsilon \sim N_n(\mathbf{0}, \sigma^2_\gamma \mathbf{I}_n)$ $\beta_\gamma = \alpha \cdot \gamma$, and $\gamma_i = \begin{cases} 0, & \text{if } \alpha_i = 0, \\ 1, & \text{otherwise,} \end{cases}$ for i = 1, ..., k. Objective Bayes Model Selection: Some Methods and Some Theory [14]



to measure the support for H_0 .

A Serious Discussion

Elías and Javier discussing appropriate model selection priors?

A Serious Discussion

Model selection priors?——-NO !!

A Serious Discussion

Elías and Javier discussing appropriate wines for dinner!

Objective Bayes Model Selection: Some Methods and Some Theory [18]

An Intrinsic Prior for α

$$\pi^{I}(\alpha|\beta_{\gamma},\sigma_{\gamma}) = \int N_{k}(\alpha|\beta_{\gamma},(\sigma_{\gamma}^{2}+\sigma^{2})\mathbf{W}^{-1})\frac{1}{\sigma_{\gamma}}\left(1+\frac{\sigma^{2}}{\sigma_{\gamma}^{2}}\right)^{-3/2}d\sigma$$

- An elliptical multivariate distribution with mean β_{γ} .
- ► Centered at the null.
 - \triangleright Not typical among variable selection priors.
- ▶ Moments ≥ 2 do not exist \Rightarrow very heavy tails.

Encompassing Details

- Practically we have seen that the direction of encompassing makes little difference
- ► Computationally the formulas are very similar

► The Bayes factor to compare

$$H_0$$
: model *i* vs. H_1 : model *j*

$$B_{ji}(\mathbf{y}, \mathbf{X}) = \frac{2(j+1)^{(j-i)/2}}{\pi} \times \int_{0}^{\pi/2} \frac{(\sin \phi)^{j-i} [n+(j+1)\sin^2 \phi]^{(n-j)/2}}{[n \frac{\text{RSS}_j}{\text{RSS}_i} + (j+1)\sin^2 \phi]^{(n-i)}} d\phi$$

where RSS = residual sum of squares.

Encompassing Details

► Encompassing from below

 H_0 : intercept only vs. H_1 : model j> Bayes Factor = $B_{j1}(\mathbf{y}, \mathbf{X})$

▶ Encompassing from above
 H₀: model j vs. H₁: all regressors
 ▷ Bayes Factor = B_{kj}(y, X)

Objective Bayes Model Selection: Some Methods and Some Theory [21]

Implementation: Stochastic Search

► Why a Stochastic Search? ▷ Number of Models ▷ Multiple Maxima ▶ What Drives the Search? \triangleright Choice of Objective Function ► How to Search? \triangleright Explore the entire space \triangleright Hot/Cold Searching \triangleright Metropolis is practical solution

Modern search algorithms

- Developed by George and McCulloch (1993)
 Using the Gibbs sampler
- The stochastic search algorithm
 'visits' models having high probability
 a ranking of models is obtained
 can escape from local modes
- ► Models were not ranked according to any obvious criterion.
- ► We want a stochastic search with stationary distribution proportional to the model posterior probabilities.

Objective Bayes Model Selection: Some Methods and Some Theory [23]

Why a Stochastic Search?

▶ Predictors x_1, x_2, x_3 , using squares and interactions, there are 2^{18} possible model,

$$2^{18} = 262, 144.$$

► We will see the Ozone data example, in which there are 2⁶⁵ possible models.

$$\mathbf{2^{65}=36,893,488,147,419,103,232}$$

\blacktriangleright A search algorithm is needed.

How to Search?

- ▶ Choice of Objective Function ⇒ Stationary Distribution
 ▷ Use a Markov Chain (MCMC) with
 - Stationary Distribution \propto Model Posterior Probabilities
- ► Explore the entire space
 - \triangleright Don't get trapped in local modes
 - \triangleright Visit models with high posterior probability
 - \triangleright Be sure to see everything
 - \triangleright Greedy algorithms can get "stuck"

How to Search?

- ► Metropolis-Hastings
- ► Have been through many incarnations
- We currently use a two-part hybrid algorithm
 One part: Independent Jumps Global Moves
 Other part: Random Walk Local Moves

Hybrid Metropolis-Hastings

 \blacktriangleright At iteration t, first part:

 \triangleright Choose candidate $M_{\gamma'} \sim g(\cdot),$ Independent

 \triangleright Calculate

 \triangleright

$$\begin{split} \text{MHRatio} &= \log \left(\frac{P(M_{\gamma'} | \mathbf{y}, \mathbf{X}) / g(M_{\gamma'})}{P(M_{\gamma} | \mathbf{y}, \mathbf{X}) / g(M_{\gamma})} \right) \\ \text{Accept candidate } M_{\gamma'} \sim g(\cdot) \text{ with probability} \\ &\min \left\{ e^{T_1 \times \text{MHRatio}}, 1 \right\} \end{split}$$

Objective Bayes Model Selection: Some Methods and Some Theory [27]

Hybrid Metropolis-Hastings

 \blacktriangleright At iteration t, second part:

- ► Choose candidate $M_{\gamma'} \sim$ Random Walk ▷ Select variable at random:
 - \triangleright Change $0 \rightarrow 1 \text{ or } 1 \rightarrow 0$

► MHRatio = log
$$\left(\frac{P(M_{\gamma'}|\mathbf{y}, \mathbf{X})}{P(M_{\gamma}|\mathbf{y}, \mathbf{X})}\right)$$

► Accept candidate
$$M_{\gamma'}$$
 with probability
 $\min \left\{ e^{T_2 \times \text{MHRatio}}, 1 \right\}$

Objective Bayes Model Selection: Some Methods and Some Theory [28]

Hybrid Metropolis-Hastings

- ► Tuning Parameters !!
- ► Acceptance Probabilities ▷ Independent Jump: $\min \left\{ e^{T_1 \times \text{MHRatio}}, 1 \right\}$ ▷ Random Walk: $\min \left\{ e^{T_2 \times \text{MHRatio}}, 1 \right\}$
- $\blacktriangleright T_1 = \text{Cold}$
- $\blacktriangleright T_2 = Hot$

► Search Algorithm:

▷ This is a reversible ergodic Markov chain ▷ Stationary distribution $\propto P(M_{\gamma}|\mathbf{y}, \mathbf{X})$.

► Convergence

▷ Finite Sample Space - Uniformly Ergodic

► Search Algorithm:

▷ This is a reversible ergodic Markov chain

 \triangleright Stationary distribution $\propto P(M_{\gamma}|\mathbf{y}, \mathbf{X}).$

► Convergence

▷ Finite Sample Space - Uniformly Ergodic - HA HA!

► Search Algorithm:

 \triangleright This is a reversible ergodic Markov chain

 \triangleright Stationary distribution $\propto P(M_{\gamma}|\mathbf{y}, \mathbf{X}).$

► Convergence

⊳ Finite Sample Space - Uniformly Ergodic - HA!

► Exploration

▷ Don't have bound on convergence rate

▷ Close to stationary distribution?

▷ Probably do not see entire space

Finally, Metropolis is the only practical solution
 Note that

$$P(M_{\gamma}|\mathbf{y}, \mathbf{X}) = \frac{B_{\gamma 1}(\mathbf{y}, \mathbf{X})}{1 + \sum_{\gamma \in \Gamma, \gamma \neq \mathbf{1}} B_{\gamma 1}(\mathbf{y}, \mathbf{X})},$$

Denominator incalculable in large problems
But all probabilities have the same denominator.
Thus, it cancels out in

$$\frac{P(M_{\gamma'}|\mathbf{y}, \mathbf{X})}{P(M_{\gamma}|\mathbf{y}, \mathbf{X})}.$$

 \triangleright This is all we need for Metropolis.

Objective Bayes Model Selection: Some Methods and Some Theory [33]

Examples - Hald Regression Data

► Supports Intrinsic Prior/Encompassing from above

► Stochastic Search not needed

► An ancient and often-analyzed data set

Measure the effect of heat on cement
13 observations on the dependent variable (heat)
4 predictor variables
2⁴ = 16 possible models

Objective Bayes Model Selection: Some Methods and Some Theory [34]

Examples - Hald Regression Data

► Posterior probabilities for the best models.

► Other models had posterior probability less than 0.00001.

Variables	Posterior Probability
x_1, x_2	0.5224
x_{1}, x_{4}	0.1295
x_1, x_2, x_3	0.1225
x_1, x_2, x_4	0.1098
x_1, x_3, x_4	0.0925
x_2, x_3, x_4	0.0120
x_1, x_2, x_3, x_4	0.0095
x_3, x_4	0.0013

Examples - Hald Regression Data

► Comparison to Other Findings

Top Models			
Intrinsic Prior	Berger/Pericchi	Draper/Smith	
x_1, x_2	x_1, x_2	x_1, x_2	
x_1, x_4	x_1, x_4	x_1, x_4	
x_1, x_2, x_3			
x_1, x_2, x_4		x_1, x_2, x_4	
x_1, x_3, x_4			
x_2,x_3,x_4			
x_1, x_2, x_3, x_4			
x_3, x_4	x_3, x_4		

▶ Berger/Pericchi: "... $\{x_1, x_2\}$ is moderately preferred to $\{x_1, x_4\}$ and quite strongly preferred to $\{x_3, x_4\}$ ".

Examples - Ozone Data

\blacktriangleright First analyzed by Breiman and Friedman (1985)

- Breiman (2001) remarked that in the 1980s large linear regressions were run, using squares and interaction terms, with the goal of selecting a good prediction model.
- ► However, the project was not successful because the falsealarm rate was too high.
- ▶ We take the full model to be
 ▷ all linear, quadratic, and two-way interactions
 ▷ 10 + 10 + 45 = 65 predictors and 2⁶⁵ models

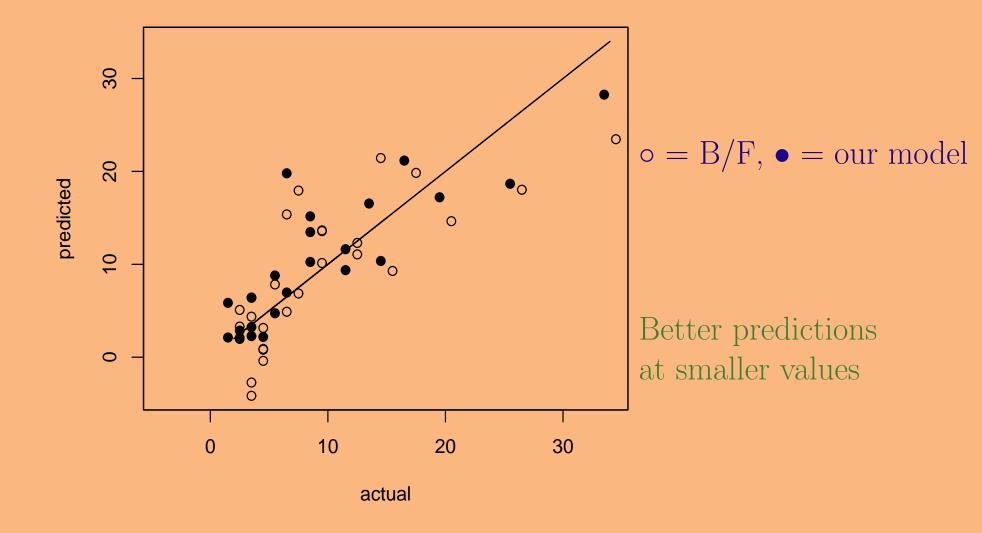
Objective Bayes Model Selection: Some Methods and Some Theory [37]

Ozone Data - Top Three Models			
Variables	Post. Prob.	R^2	Avg. Pred. Error
$ \begin{array}{c} \{x_2, x_1^2, x_7^2, x_9^2, x_1x_5, \\ x_2x_6, x_3x_7, x_4x_6, \\ x_6x_8, x_6x_{10} \} \end{array} $	0.214	0.758	0.873
$egin{array}{llllllllllllllllllllllllllllllllllll$	0.122	0.718	0.908
$ \{ x_6, x_5^2, x_7^2, x_9^2, x_1x_{10}, \\ x_4x_7, x_4x_8, x_5x_{10}, x_6x_8 \} $	0.114	0.748	0.818

Ozone Data - Top Three Models

▷ Prediction data not used in fitting

▷ All models improve on Breiman/Friedman



Objective Bayes Model Selection: Some Methods and Some Theory [39]

Part Two: Things We Did Today

George Casella, University of Florida 39

Objective Bayes Model Selection: Some Methods and Some Theory [40]

It Does OK with Data, So...

► Testing a Procedure on Examples is Necessary

▶ But Examples Don't Cover All Situations

► Can We Establish a Theoretical Property?

► We Go for the Minimum - Consistency

Objective Bayes Model Selection: Some Methods and Some Theory [41]

Pairwise Consistency

 \blacktriangleright To test the hypothesis

 H_0 : Model M_i vs. H_A : Model M_j .

- $\blacktriangleright M_i$ is nested in the model M_j
- ► The posterior probability of M_i is $P(M_i | \mathbf{y}, \mathbf{X}) = \frac{m_i(\mathbf{y}, \mathbf{X})}{m_i(\mathbf{y}, \mathbf{X}) + m_j(\mathbf{y}, \mathbf{X})} = \frac{BF_{ij}}{1 + BF_{ij}},$

Pairwise Consistency

► For testing

```
H_0: Model M_i vs. H_A: Model M_j.
```

► It is well known that, under regularity conditions, $P(M_i | \mathbf{y}, \mathbf{X}) \rightarrow \begin{cases} 1 \text{ if } M_i \text{ is true} \\ 0 \text{ if } M_j \text{ is true} \end{cases},$

as $n \to \infty$

▶ We want to extend this to the entire class of models.

Objective Bayes Model Selection: Some Methods and Some Theory [43]

Consistency in the Class of Models

▶ We compare all models $M_j \in \mathfrak{M}$ through testing H_0 : Model M_1 vs. H_A : Model M_j . where M_1 is the intercept only model.

► This gives an ordering in the space of all models \mathfrak{M} with $P(M_j | \mathbf{y}, \mathbf{X}) = \frac{BF_{j1}}{1 + \sum_{j' \neq 1} BF_{j'1}}, \ M_j \in \mathfrak{M}.$ Objective Bayes Model Selection: Some Methods and Some Theory [44]

Consistency in the Class of Models

- ► We have the following theorem.
- ▶ Suppose that $M_T \in \mathfrak{M}$ is the true model.

Theorem In the class of linear models \mathfrak{M} with design matrices satisfying conditions . . ., the intrinsic Bayesian variable selection procedure is consistent. That is, when sampling from M_T we have that

$$\frac{P(M_j|\mathbf{y}, \mathbf{X})}{P(M_T|\mathbf{y}, \mathbf{X})} \to 0, \ ,$$

whenever the model $M_j \neq M_T$.

Objective Bayes Model Selection: Some Methods and Some Theory [45]

Consistency in the Class of Models - Proof

▶ As $n \to \infty$, the ratio is approximated by

$$\frac{P(M_j | \mathbf{y}, \mathbf{X})}{P(M_T | \mathbf{y}, \mathbf{X})} \approx \mathbf{K} \exp\left(\frac{T - j}{2} \log n + \frac{n}{2} \log \frac{\mathcal{B}_{1T}^n}{\mathcal{B}_{1j}^n}\right)$$

► Assuming
$$M_T \neq M_1$$
,
 $\frac{\mathcal{B}_{1T}^n}{\mathcal{B}_{1j}^n} | M_T \rightarrow \mathbf{c} < 1.$

$$\frac{P(M_j | \mathbf{y}, \mathbf{X})}{P(M_T | \mathbf{y}, \mathbf{X})} \to 0 \text{ for all } j \neq T$$

Objective Bayes Model Selection: Some Methods and Some Theory [46]

One Step Harder: Changepoints

► Variable Selection: n observations, k variables ▷ Number of Models = 2^{k-1}

► Changepoint: n observations ▷ Number of Models = 2^{n-1} Objective Bayes Model Selection: Some Methods and Some Theory [47]

Changepoint Formulation

▶ $p, 1 \le p \le n-1$,= the number of changepoints

$$\blacktriangleright \mathbf{r}_p = (r_1, \ldots, r_p)$$
 the positions

► The sample density is

$$f(\mathbf{y}|\theta_{p+1}, \mathbf{r}_p, p) = \prod_{i=1}^{r_1} f(y_i|\theta_1) \prod_{i=r_1+1}^{r_2} f(y_i|\theta_2) \times \dots \times \prod_{i=r_p+1}^{n} f(y_i|\theta_{p+1}),$$

Objective Bayes Model Selection: Some Methods and Some Theory [48]

Changepoint Models

► Similar to before, we test

 $H_0: M_0$ vs. $H_1: M_{\mathbf{r}_p},$

where M_0 = the no change point model

▶ Here we need a prior distribution on M_{rp}
 ▷ In Variable Selection we used Uniform on Models
 ▷ In Changepoint, there are too many models to be totally uniform

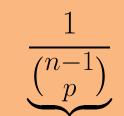
Objective Bayes Model Selection: Some Methods and Some Theory [49]

Changepoint Models

 \blacktriangleright To test $H_0: M_0$ vs. $H_1: M_{\mathbf{r}_p}$

► Model $M_{\mathbf{r}_p}$ has prior probability

 $\pi(\mathbf{r},p) = \frac{1}{n} \times$

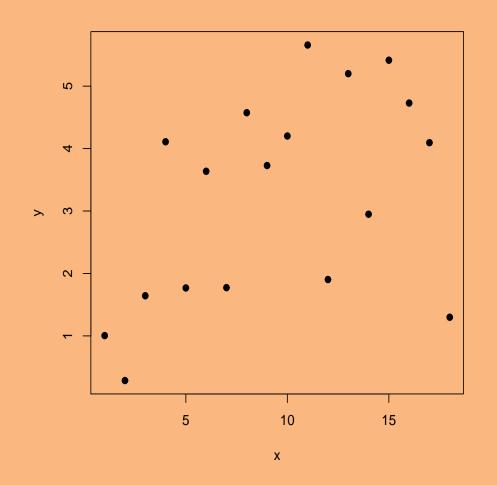


Uniform on Number of Changepoints Uniform Given Number of Changepoints

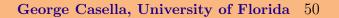
► And Rank Models by $P(M_{\mathbf{r}}|\mathbf{y})$.

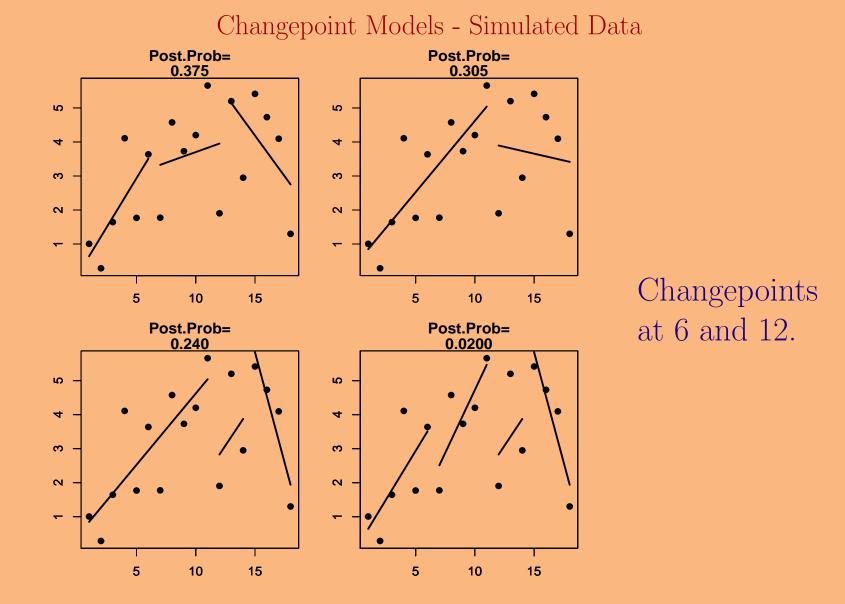
Objective Bayes Model Selection: Some Methods and Some Theory [50]

Changepoint Models - Simulated Data



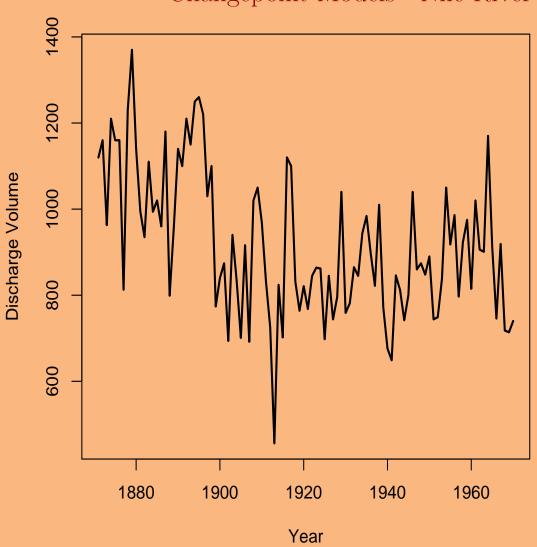
Do you see the changepoints?





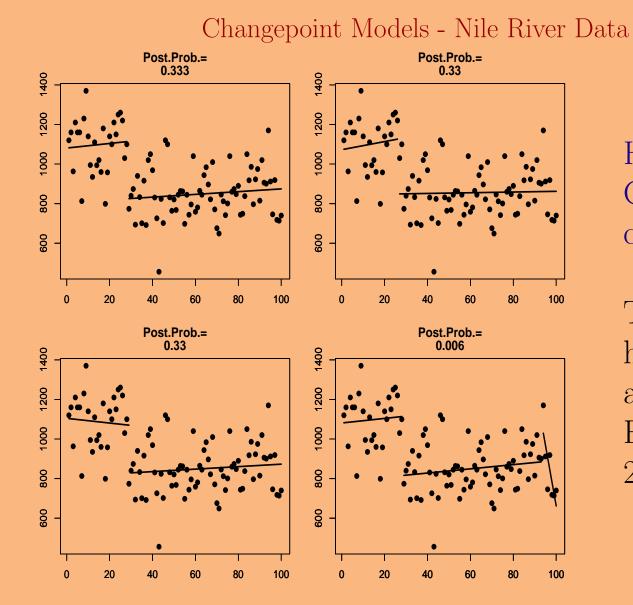
Objective Bayes Model Selection: Some Methods and Some Theory [51]

George Casella, University of Florida 51



Changepoint Models - Nile River Data

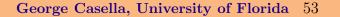
Volume of Discharge 1871-1970.



Objective Bayes Model Selection: Some Methods and Some Theory [53]

Historical and Statistica Consensus is for change at x=28 (1898).

Top Three Models have 1 changepoint at 28,26,29. Fourth has 2: 28 and 93.



Objective Bayes Model Selection: Some Methods and Some Theory [54]

Part Three: Tomorrow Never Knows

George Casella, University of Florida 54

Objective Bayes Model Selection: Some Methods and Some Theory [55]

One Step Harder: Clustering

► Variable Selection: n observations, k variables ▷ Number of Models = 2^{k-1}

▶ Changepoint: n observations
 ▷ Number of Models = 2ⁿ⁻¹
 ▷ n = 20 ⇒ 524, 288 Models

 $\nu n = 20 \rightarrow 524, 200$ Widdels

► Clustering: *n* observations ▷ Number of Models = \mathcal{B}_n ▷ $n = 20 \Rightarrow 51,724,158,235,372$ Models Objective Bayes Model Selection: Some Methods and Some Theory [56]

Cluster Models

► Similar to before, we test $H_0 : M_0$ vs. $H_1 : M_{\omega_p}$ ▷ M_0 = the no cluster model

- ► Here we need a prior distribution on M_{ω_p}
- ▶ Uniform: π(ω_p) = 1/n × 1/S_{n,p}
 ▷ S_{n,p} = Stirling Number of the Second Kind
 ▷ There are too many models to be totally uniform
 ▷ Too much time in extreme models

Objective Bayes Model Selection: Some Methods and Some Theory [57]

Cluster Models

► To test $H_0 : M_0$ vs. $H_1 : M_{\omega_p}$ ▷ M_0 = the no cluster model

$$\qquad \qquad \ \bullet \pi(\omega_p|\lambda) = \frac{\Gamma(\lambda)}{\Gamma(n+\lambda)} \lambda^p \prod_{i=1}^p \Gamma(n_j) \\ \qquad \quad \ \ \ \bullet \text{Crowley (1997 JASA)}$$

▷ Prior Expectation:

$$\mathbf{E}p = \lambda \sum_{i=0}^{n-1} \frac{1}{\lambda + i}$$

(Booth *et al.* 2006)

► Rank Models by
$$P(M_{\omega_p}|\mathbf{y})$$
.

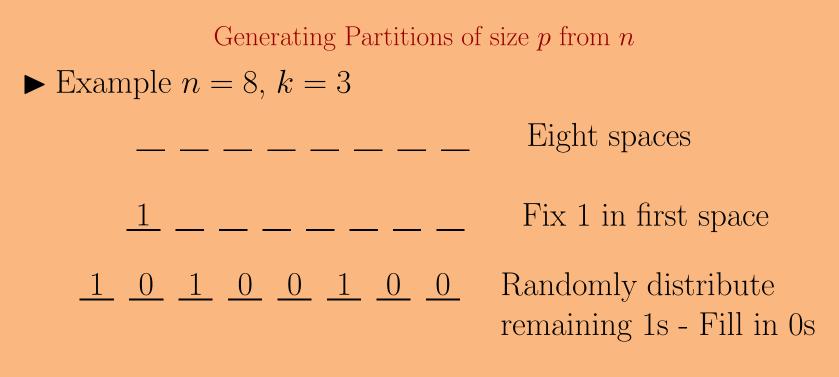
George Casella, University of Florida 57

Objective Bayes Model Selection: Some Methods and Some Theory [58]

Cluster Models - Stochastic Search

- ► Mixes Biased Random Walk and Independent Metropolis
- ► Biased Random Walk:
 - \triangleright Randomly move object to another occupied cluster
 - \triangleright Or start new cluster
- ► Independent Metropolis
 - \triangleright Select partition size p with probability 1/n
 - \triangleright Generate random partition with p clusters

Objective Bayes Model Selection: Some Methods and Some Theory [59]



 \blacktriangleright One cluster of size 2, Two clusters of size 3

► The probability of a partition $\omega = \{n_1 \ n_2 \ \cdots \ n_k\}$ is $g(\omega) = \frac{k!}{\binom{n-1}{k-1}\binom{n}{n_1 \ n_2 \ \cdots \ n_k}}.$

George Casella, University of Florida 59

Objective Bayes Model Selection: Some Methods and Some Theory [60]

Hybrid Metropolis-Hastings - Variations

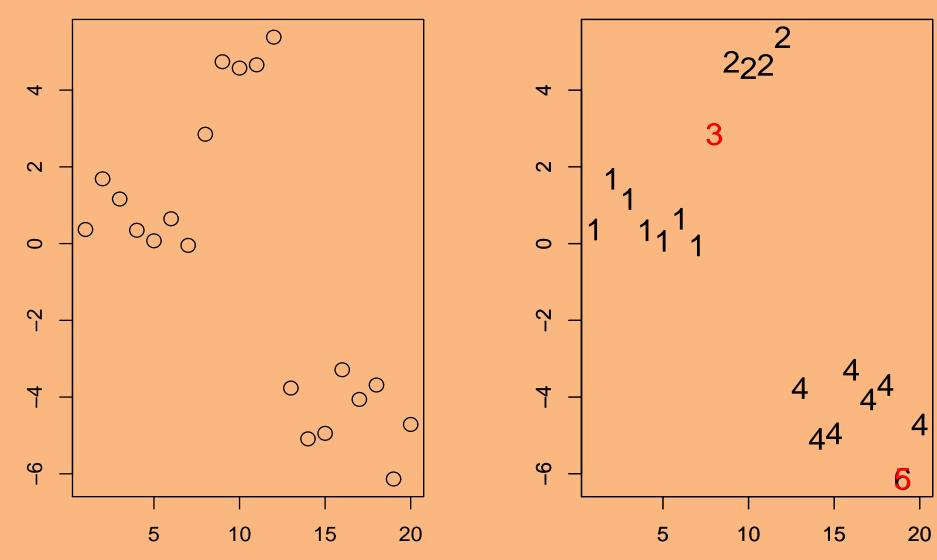
► Independent Jump

- $\triangleright p_k =$ posterior probability of partitions with k clusters
- \triangleright Choose $k \sim p_k$, then choose model
- \triangleright Need to estimate p_k

\blacktriangleright Split-Merge Moves

- \triangleright With probability p: Merge two randomly chosen clusters
- \triangleright With probability 1-p: Randomly split a cluster
- ► Searching for good global moves

Cluster Models - Simulated Data



George Casella, University of Florida 61

Objective Bayes Model Selection: Some Methods and Some Theory [62]

Changepoint and Cluster Models

► To Do: Establish Consistency Results

► Similar to variable selection, ▷ Show that when sampling from M_{True} $\frac{P(M_j | \mathbf{y}, \mathbf{X})}{P(M_{\text{True}} | \mathbf{y}, \mathbf{X})} \rightarrow 0, ,$ whenever the model $M_j \neq M_{\text{True}}$

▶ Problem: Model space \uparrow with n

Objective Bayes Model Selection: Some Methods and Some Theory [63]

Conclusions- Model Selection

► Two distinct parts of a model selection method

Model selection criterion Stochastic search

George Casella, University of Florida 63

Objective Bayes Model Selection: Some Methods and Some Theory [64]

Conclusions- Model Selection

 \blacktriangleright Two distinct parts of a model selection method

Model selection criterion Stochastic search

Model selection criterionIntrinsic Post. ProbabilitiesStochastic searchDriven by Criterion

Objective Bayes Model Selection: Some Methods and Some Theory [65]

Conclusions- Model Selection

 \blacktriangleright Two distinct parts of a model selection method

Model selection criterion Stochastic search

Model selection criterionIntrinsic Post. ProbabilitiesStochastic searchDriven by Criterion

► Intrinsic posterior probabilities favor small models

Conclusions - Model Selection

This strategy can be used in other settings
 Can use other criteria to rank models
 Can use other criteria drive search

Conclusions - Model Selection

- ► This strategy can be used in other settings
 - \triangleright Can use other criteria to rank models
 - \triangleright Can use other criteria drive search
- ► We use two "prior" distributions on model space
 - 1. Generate Independent Candidates More Diffuse
 - 2. Calibrate Bayes Factors Less Diffuse

Conclusions - Model Selection

► We use two "prior" distributions on model space

- 1. Generate Independent Candidates More Diffuse
- 2. Calibrate Bayes Factors Less Diffuse

► For example, in clustering

1. Independent Candidates $g(\omega) = \frac{1}{n} \frac{k!}{\binom{n-1}{k-1}\binom{n}{n_1 n_2 \cdots n_k}}$.

2. Calibrate Bayes Factors $\pi(\omega_p|\lambda) = \frac{\Gamma(\lambda)}{\Gamma(n+\lambda)}\lambda^p \prod_{i=1}^p \Gamma(n_j)$

George Casella, University of Florida 68

Conclusions - Stochastic Search

- The search algorithm is Metropolis-Hastings
 Candidate from mixture
- ▶ Important to choose a good candidate distribution.
- ► The candidate must
 - \triangleright find states having large values of the criterion
 - \triangleright escape from local modes to better explore the space.
- The construction proposed here seems to do this.

To Do

► Some Theory for Changepoint and Clustering Algorithms

Objective Bayes Model Selection: Some Methods and Some Theory [71]

To Do

- ► Some Theory for Changepoint and Clustering Algorithms
- ▶ Improve the $R \text{ code} \Rightarrow$ Handle Large Problems
- \blacktriangleright Improve the **R** code \Rightarrow **R** package

To Do

- ► Some Theory for Changepoint and Clustering Algorithms
- ▶ Improve the R code ⇒ Handle Large Problems
- \blacktriangleright Improve the **R** code \Rightarrow **R** package
- Other Model Selections Problems
 Mixed Models
 GLM(M)

Objective Bayes Model Selection: Some Methods and Some Theory [73]

Details Can be Found In

► Yesterday

 \triangleright Casella and Moreno (2006) Objective Bayes Variable Selection JASA

► Things We Did Today

- ▷ Casella *et al.* (2006). Consistency of Bayesian Procedures for Variable Selection. Technical Report.
- > Girón et al. (2007) Objective Bayesian Analysis of Multiple Changepoints for Linear Models. Bayesian Statistics 8

► Tomorrow Never Knows

- ▷ Clustering paper to be written
- Available at http://www.stat.ufl.edu/~casella/Papers

Objective Bayes Model Selection: Some Methods and Some Theory [74]

Thanks!

George Casella, University of Florida 74