STA6934: Monte Carlo Statistical Methods Spring 2010 Prof. Casella

Assignment	Chapter	Due Date	Problems
1	1	Friday 1/29	1.1, 1.4, 1.7, 1.13, 1.22,1.23ab,1.24 (Details are in Casella and Berger),1.28
Assignment	Chapter	Due Date	Problems
9	93	Friday 2/12	2.6cd 2.17abc 2.10

2	2-3	Friday $2/12$	2.6cd, 2.17abc, 2.19,
			2.25a - also- write an R program to generate
			the noncentral χ^2 using both representations
			2.31,3.1, 3.3b, 3.14 (just use g_1 and g_4), 3.21ab

Note: In Problem 3.14, g_4 should be the normal density.

Assignment	Chapter	Due Date	Problems
3	5 and 6	Fri 2/26	5.1, 5.9ab, 5.10, 5.17, 5.24, 5.29 6.7, 6.12a, 6.21, 6.22

Note: I have never assigned Problem 5.24 before, so I don't know how hard it is. I suggest that you *do not* leave it to the end!

Assignment	Chapter	Due Date	Problems
4	6 and 7	Friday 3/19	6.22, 6.35ab, 6.40a, 6.67 7.2, 7.9, 7.21abc, 7.27, 7.30a, 7.39, 7.44

Hints:

1. 6.40a: Use the notation that we discussed in class, and show that

$$\sup_{A} |F_1(A) - F_2(A)| = \int |f_1(x) - f_2(x)| dx.$$

First show that

$$0 = \int_{A} (f_1(x) - f_2(x)) dx + \int_{A^c} (f_1(x) - f_2(x)) dx,$$

and that this implies $|\int_A f_1(x) - f_2(x)dx| = |\int_{A^c} f_1(x) - f_2(x)dx|$. The rest follows.

2. 7.39: You might want to look at problems 6.47 and 6.50 - you can assume the the results in those problems are true. In particular, writing the result of Problem 6.50 in matrix form shows that

$$\lim_{N \to \infty} \frac{1}{N} \operatorname{var}\left(\sum_{i=1}^{N} h(X_i)\right) = h' B[2Z - I - A]h,$$

where A and Z are defined in Problem 6.47 and B is a diagonal matrix whose entries are π_i , the stationary distribution.

Assignment	Chapter	Due Date	Problems
5	7 and 8	Friday 4/9	8.1(a), 8.4, 8.5, 9.2, 9.4, 9.8(a), 9.14(a), 9.17(1)(2), 9.26(a)(b)

Notes:

- 1. 9.8 is a difficult problem. You do not have to use the ARS algorithm if you can find another way. You also do not have to compare to the answer in Example 9.7.
- 2. After you do 9.14(a), give the details of a Gibbs sampler to generate the θ s. Write an R (or other) program to get a histogram of the posterior distribution of the θ s.
- 3. For 9.26, fit the model to the data of Table 11.1 (see also Figure 11.1) for k=3 and k=4. You will have to choose values of the hyperparameters. The data are in a .txt file that you can download.

Assignment	Chapter	Due Date	Problems
6	10 and 12	Friday 4/23	10.10cd,10.12, 10.13, (consider only the case $p = 2$) 10.14, 10.19ab, 10.28

Additional Problems

1. Problem 5.18: Solve the problem as stated and, in addition, write a Gibbs sampler to estimate the parameters. Compare the answers from EM and Gibbs. \rightarrow **Next Page**

2. This is based on the material in Chapter 12, but you have the tools to solve it. For the model and data of Problem 10.28, derive three estimators of the α_i . Monitor convergence of the chain with the three estimators, by plotting their cumulative means.