#source("c:/Work07/ShortCourse07/Programs/PoissonCompletionEM.txt",print.eval=TRUE)# #This does the MCEM algorithm for the poisson completion# nsim<-50;lam<-array(313/360,dim=c(nsim,1));ybar<-array(4,dim=c(nsim,1)) #Use m values for the mean m<-25;y<-array(0,dim=c(m,1)); for (j in 2:nsim) { for(i in 1:m){while(y[i] < 4) y[i] <- rpois(1,lam[j -1])}; ybar[j]<-mean(y); lam[j]<-(313+13*ybar[j])/360; y<-y*0; } par(mfrow=c(1,2)) hist(ybar,col="green",breaks=10) plot(lam,col="red",type="l",ylim=c(.95,1.05)) #To show standard deviation v1<-var(-360+(313+13*ybar)/lam[nsim]) v2<-mean((313+13*ybar)/lam[nsim]^2) sd<- sqrt(-1/(v1-v2)) top<-lam[nsim]+sd;bot<-lam[nsim]-sd par(mfrow=c(1,1)) plot(lam,col="red",type="l",ylim=c(.95,1.10)) par(new=T) lines(x=c(0,nsim),y=c(top,top),col="green") par(new=T) lines(x=c(0,nsim),y=c(bot,bot),col="green")