#source("c:/Work07/ShortCourse07/Programs/Truncated.txt",print.eval=TRUE)# #This gives an accept-reject algorithm for a Truncated Normal# par(mfrow=c(1,2)) a<-3.5 #Truncation Point n<-100 #Sample size #---------Generate a Sample Naively------------------------- #---------Take n=100, a=1 then a=3.5-------------------------- X<-array(0,c(1,n)) for(i in 1:n) { z<-rnorm(1);while(z