#source("c:/Work07/ShortCourse07/Programs/censoredGibbs.txt",print.eval=TRUE)# #This does Gibbs for censored data# #n obs normal(t0,1), m uncensored values, n-m censored at a# xdata<-c(3.64, 2.78, 2.91,2.85,2.54,2.62,3.16,2.21,4.05,2.19,2.97,4.32, 3.56,3.39,3.59,4.13,4.21,1.68,3.88,4.33) m<-length(xdata) n<-30;a<-4.5 #1/3 missing data nsim<-10000 #----------------------Initial Values---------------------------- xbar<-mean(xdata) that<-array(xbar,dim=c(nsim,1)) alpha<-a+1;M<-(1/alpha)*exp((alpha^2/2)-alpha*a) z<-array(0,dim=c(n-m,1)) #----------------------Gibbs sampler----------------------------- for(i in 1:nsim) { for(j in 1:(n-m)) { while(z[j]==0) #Accept-Reject for truncated normal { zcand<-a+rexp(1,rate=alpha) test<-exp(zcand^2/2)/(M*exp(alpha*(zcand-a))) z[j]<-zcand*(runif(1)