#> source("c:/Work07/ShortCourse07/genetic_em.txt",print.eval=TRUE)# #This does EM for the genetic data# nsim<-25;x<-c(125,18,20,34);t<-array(.3,dim=c(nsim,1)); std1<-array(.7,dim=c(nsim,1));std2<-array(.5,dim=c(nsim,1)) z2<-x[1]/2; for (j in 2:nsim) { z2<-x[1]*t[j-1]/(2+t[j-1]) t[j]<- (z2+x[4])/(z2+x[2]+x[3]+x[4]); std1[j]<-(x[1]*t[j]/((2+t[j])*t[j]^2))+(x[4]/(t[j]^2))+((x[2]+x[3])/((1-t[j])^2)) std1[j]<-1/sqrt(std1[j]);std1[j]<-std2[j]<-std1[j] } plot(t,type="l",lwd=2,xlim=c(1,nsim),ylim=c(.55,.7),xlab="iteration",main="",ylab="") par(new=T) plot(t+std1,type="l",lwd=2,lty=2,xlim=c(1,nsim),ylim=c(.55,.7),xlab="iteration",main="",ylab="") par(new=T) plot(t-std2,type="l",lwd=2,lty=2,xlim=c(1,nsim),ylim=c(.55,.7),xlab="iteration",main="",ylab="")