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Monte Carlo Statistical Methods: Introduction [1]

Based on

•Monte Carlo Statistical Methods,
Christian Robert and George Casella,
2004, Springer-Verlag

• Programming in R (available as a free download from
http://www.r-project.org

• Also WinBugs, available free from
http://www.mrc-bsu.cam.ac.uk/bugs/

• R programs for the course available at
http://www.stat.ufl.edu/∼casella/mcsm/
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Introduction

• Statistical Models

• Likelihood Models

• Bayesian Models

• Deterministic Numerical Models

• Simulation vs. Numerical Methods
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1.1 Statistical Models

• In a typical statistical model we observe

Y1, Y2, . . . , Yn ∼ f(y|θ)

• The distribution of the sample is given by the product,
the likelihood function

n
∏

i=1

f(yi|θ).

• Inference about θ is based on this likelihood.

• In many situations the likelihood can be complicated
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Example 1.1: Censored Random Variables

• If
X1 ∼ N(θ, σ2), X2 ∼ N(µ, ρ2),

• the distribution of Y = min{X1, X2} is
[

1− Φ

(

y − θ

σ

)]

× ρ−1φ

(

y − µ

ρ

)

+

[

1− Φ

(

y − µ

ρ

)]

× σ−1φ

(

y − θ

σ

)

,

where Φ and φ are the cdf and pdf of the normal distribution.

• This results in a complex likelihood.
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Example 1.2: Mixture Models

•Models of mixtures of distributions:

X ∼ fj with probability pj,

for j = 1, 2, . . . , k, with overall density

X ∼ p1f1(x) + · · · + pkfk(x) .

For a sample of independent random variables (X1, · · · , Xn), sample
density

n
∏

i=1

{p1f1(xi) + · · · + pkfk(xi)} .

• Expanding this product involves kn elementary terms: prohibitive to
compute in large samples.
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Example 1.2 : Normal Mixtures

• For a mixture of two normal distributions,

pN (µ, τ 2) + (1− p)N (θ, σ2) ,

• The likelihood proportional to

n
∏

i=1

[

pτ−1ϕ

(

xi − µ

τ

)

+ (1− p) σ−1 ϕ

(

xi − θ

σ

)]

containing 2n terms.

• Standard maximization techniques often fail to find the global maxi-
mum because of multimodality of the likelihood function.

•R program → normal-mixture1
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#This gives the distribution of the mixture of two normals#

e<-.3; nsim<-1000;m<-2;s<-1;

u<-(runif(nsim)<e);z<-rnorm(nsim)

z1<-rnorm(nsim,mean=m,sd=s)

#This plots histogram and density#

hist(u*z+(1-u)*z1,xlab="x",xlim=c(-5,5),freq=F,

col="green",breaks=50,)

mix<-function(x)e*dnorm(x)+(1-e)*dnorm(x,mean=m,sd=s)

xplot<-c(-50:50)/10

par(new=T)

plot(xplot,mix(xplot), xlim=c(-5,5),type="l",yaxt="n",ylab="")
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Histogram of u * z + (1 − u) * z1
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Figure 1: Histogram and density of normal mixture
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1.2: Likelihood Methods

•Maximum Likelihood Methods

◦ For an iid sample X1, . . . , Xn from a population with density f(x|θ1, . . . , θk

the likelihood function is

L(θ|x) = L(θ1, . . . , θk|x1, . . . , xn)

=
∏n

i=1
f(xi|θ1, . . . , θk).

◦ Global justifications from asymptotics
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Example 1.9: Student’s t distribution

• Reasonable alternative to normal errors is Student’s t distribution, de-
noted by

T (p, θ, σ)

more “robust” against possible modelling errors

• Density of T (p, θ, σ) proportional to

σ−1

(

1 +
(x− θ)2

pσ2

)−(p+1)/2

,
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Example 1.9: Student’s t distribution

•When p known and θ and σ both unknown, the likelihood

σnp+1
2

n
∏

i=1

(

1 +
(xi − θ)2

pσ2

)

.

may have n local minima.

• Each of which needs to be calculated to determine the global maxi-
mum.
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• Illustration of the multiplicity of modes of the likelihood from a Cauchy distribution

C(θ, 1) (p = 1) when n = 3 and X1 = 0, X2 = 5, and X3 = 9.
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Section 1.3 Bayesian Methods

• In the Bayesian paradigm, information brought by

◦ the data x, realization of

X ∼ f(x|θ),

◦ combined with prior information specified by prior distribution
with density π(θ)
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Bayesian Methods

• Summary in a probability distribution, π(θ|x), called the posterior
distribution

• Derived from the joint distribution f(x|θ)π(θ), according to

π(θ|x) =
f(x|θ)π(θ)

∫

f(x|θ)π(θ)dθ
,

[Bayes Theorem]

• where

m(x) =

∫

f(x|θ)π(θ)dθ

is the marginal density of X
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Example 1.11: Binomial Bayes Estimator

• For an observation X
from the binomial distribution Binomial(n, p) the (so-called) conjugate
prior
is the family of beta distributions Beta(a, b)

• The classical Bayes estimator δπ is the posterior mean

δπ =
Γ(a + b + n)

Γ(a + x)Γ(n− x + b)

∫ 1

0

p px+a−1(1− p)n−x+b−1dp

=
n

a + b + n

(x

n

)

+
a + b

a + b + n

(

a

a + b

)

.

• A Biased estimator of p
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The Variance/Bias Trade-off

• Bayes Estimators are biased

•Mean Squared Error (MSE) = Variance + Bias2

◦MSE = E(δπ − p)2

◦Measures average closeness to parameter

• Small Bias ↑ can yield large Variance ↓.

δπ =
n

a + b + n

(x

n

)

+
a + b

a + b + n

(

a

a + b

)

Varδπ =

(

n

a + b + n

)2

Var
(x

n

)
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Conjugate Priors

• A prior is conjugate if

π(θ)(the prior) and π(θ|x)(the posterior)

are in the same family of distributions.

• Examples

◦ π(θ) normal , π(θ|x) normal

◦ π(θ) beta , π(θ|x) beta

• Restricts the choice of prior

• Typically non-robust

• Originally used for computational ease
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Example 1.13: Logistic Regression

• Standard regression model for binary (0−1) responses: the logit model
where distribution of Y modelled by

P (Y = 1) = p =
exp(xtβ)

1 + exp(xtβ)
.

• Equivalently, the logit transform of p, logit(p) = log[p/(1− p)], satis-
fies logit(p) = xtβ.

• Computation of a confidence region on β quite delicate when π(β|x)
not explicit.

• In particular, when the confidence region involves only one component
of a vector parameter, calculation of π(β|x) requires the integration
of the joint distribution over all the other parameters.
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Challenger Data

• In 1986, the space shuttle Challenger exploded during take off, killing
the seven astronauts aboard.

• The explosion was the result of an O-ring failure.

Flight No. 14 9 23 10 1 5 13 15 4 3 8 17
Failure 1 1 1 1 0 0 0 0 0 0 0 0
Temp. 53 57 58 63 66 67 67 67 68 69 70 70

Flight No. 2 11 6 7 16 21 19 22 12 20 18
Failure 1 1 0 0 0 1 0 0 0 0 0
Temp. 70 70 72 73 75 75 76 76 78 79 81

• It is reasonable to fit a logistic regression, with p = probability of an
O-ring failure and x = temperature.
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◦ The left panel shows the average logistic function and variation

◦ The middle panel shows predictions of failure probabilities at 65o Fahrenheit

◦ The right panel shows predictions of failure probabilities at 45o Fahrenheit.
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Section 1.4: Deterministic Numerical Methods

• To solve an equation of the form

f(x) = 0,

the Newton–Raphson algorithm produces a sequence xn:

xn+1 = xn −
(

∂f

∂x

∣

∣

∣

∣

x=xn

)−1

f(xn)

that converges to a solution of f(x) = 0.

• Note that ∂f
∂x is a matrix in multidimensional settings.
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Example 1.17: Newton-Raphson

• Newton-Raphson algorithm can be used to find the square root of a
number.

• If we are interested in the square root of b, this is equivalent to solving
the equation

f(x) = x2 − b = 0.

• This results in the iterations

x(j+1) = x(j) − f(x(j))

f ′(x(j))
= x(j) − x(j)2 − b

2x(j)
=

1

2
(x(j) +

b

x(j)
).
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Example 1.17: Newton-Raphson -2
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• Left: x2; Right: f(x) = x2 − 2

• Rapid convergence from different starting points

• Three runs are shown, starting at x = .5, 2.4.
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Example 1.17: Newton-Raphson -3
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• Problems with the function h(x) = [cos(50x) + sin(20x)]2.

• “Greediness” of the Newton-Raphson algorithm pushes it to the nearest
mode.
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Variants of Newton-Raphson

• The steepest descent method, where each iteration results in a unidi-
mensional optimizing problem for F (xn + tdn) (t ∈ ℜ), dn being an
acceptable direction, namely such that

d2F

dt2
(xn + tdn)

∣

∣

∣

∣

t=0

is of the proper sign.

• The direction dn is often chosen as ∇F or as
[

∇∇tF (xn) + λI
]−1∇F (xn),

in the Levenberg–Marquardt version.
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Section 1.4.2: Integration

• The numerical computation of an integral

I =

∫ b

a

h(x)dx

can be done by simple Riemann integration.

• By improved techniques such as the trapezoidal rule

Î =
1

2

n−1
∑

i=1

(xi+1 − xi)(h(xi) + h(xi+1)) ,

where the xi’s constitute an ordered partition of [a, b].
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Section 1.4.2: Integration

• By Simpson’s rule, whose formula is

Ĩ =
δ

3

{

f(a) + 4
n
∑

i=1

h(x2i−1) + 2
n
∑

i=1

h(x2i) + f(b)

}

in the case of equally spaced samples with (xi+1 − xi) = δ.

◦ Other approaches involve orthogonal polynomials (Gram–Charlier,
Legendre, etc.)

◦ Splines

• However, these methods may not work well in high dimensions
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Comparison

• Advantages of Simulation

◦ Integration may focus on areas of low probability

◦ Simulation can avoid these

◦ Local modes are a problem for deterministic methods

• Advantages of Deterministic Methods

◦ Simulation does not consider the form of the function

◦ Deterministic Methods can be much faster for smooth functions.

◦ In low dimensions Riemann Sums or Quadrature are very fast
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Comparison

•When the statistician

◦ needs to study the details of a likelihood surface or posterior distri-
bution

◦ needs to simultaneously estimate several features of these functions

◦ when the distributions are highly multimodal

• it is preferable to use a simulation-based approach.

• fruitless to advocate the superiority of one method over the other

•More reasonable to justify the use of simulation-based methods by the
statistician in terms of expertise.

• The intuition acquired by a statistician in his or her every-day process-
ing of random models can be directly exploited in the implementation
of simulation techniques
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Chapter 2: Random Variable Generation

• Rely on the possibility of producing (with a computer) a supposedly
endless flow of random variables (usually iid) for well-known distribu-
tions.

• Although we are not directly concerned with the mechanics of pro-
ducing uniform random variables, we are concerned with the statistics
of producing uniform and other random variables.

•We look at some basic methodology that can, starting from these
simulated uniform random variables, produce random variables from
both standard and nonstandard distributions.
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Uniform Random Numbers

• A uniform pseudo-random number generator is an algorithm which,
starting from an initial value u0 and a transformation D, produces a
sequence (ui) = (Di(u0)) of values in [0, 1].

• or all n, the values (u1, . . . , un) reproduce the behavior of an iid sample
(V1, . . . , Vn) of uniform random variables when compared through a
usual set of tests.
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Uniform Random Numbers

• This definition is clearly restricted to testable aspects of the random
variable generation, which are connected through the deterministic
transformation ui = D(ui−1).

• The validity of the algorithm consists in the verification that the se-
quence U1, . . . , Un leads to acceptance of the hypothesis

H0 : U1, . . . , Un are iid U[0,1].

• The set of tests used is generally of some consequence.

◦ Kolmogorov–Smirnov

◦ Nonparametric

◦ Time Series

◦ Die Hard (Marsaglia)

• Our definition is functional: An algorithm that generates uniform
numbers is acceptable if it is not rejected by a set of tests.
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KISS Algorithm

• A preferred algorithm

◦ A congruential generator D(x) = ax + b(modM + 1)

◦ Register Shifts to break patterns

• Period of order 295

• Successfully tested on Die Hard
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The Inverse Transform

• Lemma 2.4: If X has the cdf F (x), then the random variable F (X)
has the U[0,1] distribution.

• Thus, formally, in order to generate a random variable X ∼ F , it
suffices to generate U according to U[0,1] and then make the transfor-
mation x = F−(u).

• In other words, simulate U ∼ U[0,1] then solve for X in

U = F (X) =

∫ X

−∞
f(x)dx
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Example 2.5: Exponential variable generation

• If X ∼ Exp(1), so F (x) = 1− e−x, then solving for x in u = 1− e−x

gives x = − log(1− u).

• Therefore, if U ∼ U[0,1], the random variable X = − log U has the
exponential distribution

• R program
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Exponentials from Uniforms

#This generates exponentials from uniforms#

nsim<-10000;u<-runif(nsim);

y<--log(u);

hist(y,main="Exponential",freq=F,col="green",breaks=50)

par(new=T)

plot(function(x)dexp(x), 0,10,xlab="",ylab="",xaxt="n",yaxt="n")
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Example 2.7; Building on exponential random variables

• Some of the random variables that can be generated starting from an
exponential distribution.

• If the Xi’s are iid Exp(1) random variables,

Y = 2
ν
∑

j=1

Xj ∼ χ2
2ν , ν ∈ {1, 2, . . .

Y = β
a
∑

j=1

Xj ∼ Ga(a, β) , a ∈ {1, 2, . . .

Y =

∑a
j=1 Xj

∑a+b
j=1 Xj

∼ Be(a, b) , a, b ∈ {1, 2, . . .
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Limitations

• These transformations are quite simple to use and, hence, will often
be a favorite

• There are limits to their usefulness

◦ In scope of variables that can be generated

◦ Efficiency of generation

◦ There are more efficient algorithms for gamma and beta random
variables.

•We cannot use exponentials to generate gamma random variables with
a non-integer shape parameter

•We cannot get a χ2
1 variable, which would, in turn, get us a N (0, 1)

variable.
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Example 2.8: Box-Muller

• If r and θ are the polar coordinates of (X1, X2), then,

r2 = X2
1 + X2

2 ∼ χ2
2 = Exp(1/2) ,

θ ∼ U[0,2π] .

• If U1 and U2 are iid U[0,1], the variables X1 and X2 defined by

X1 =
√

−2 log(U1) cos(2πU2) , X2 =
√

−2 log(U1) sin(2πU2) ,

are then iid N (0, 1).
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Box-Muller Algorithm

1. Generate U1, U2 iid U[0,1] ;

2. Define
{

x1 =
√

−2 log(u1) cos(2πu2) ,

x2 =
√

−2 log(u1) sin(2πu2) ;

3. Take x1 and x2 as two independent draws from N (0, 1).
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Note on Box-Muller

• In comparison with algorithms based on the Central Limit Theorem,
this algorithm is exact

• It produces two normal random variables from two uniform random
variables

• The only drawback (in speed) being the necessity of calculating func-
tions such as log, cos, and sin.

• Devroye(1985) gives faster alternatives that avoid the use of these
functions
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Poisson Random Variables

• Discrete Random Variables can always be generated using the Proba-
bility Integral Transform.

• For Example, to generate X ∼ Poisson(θ) calculate

p0 = Pθ(X ≤ 0), p1 = Pθ(X ≤ 1), p2 = Pθ(X ≤ 2), . . .

• Then generate U ∼ Uniform[0, 1] and take

X = k if pk−1 < U < pk.

• There are more efficient algorithms, but this is OK

• R Program “DiscreteX”
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Discrete Random Variables

p<-c(.1,.2,.3,.3,.1) #P(X=0), P(X=1), etc

sum(p) #check

cp<-c(0,cumsum(p))

nsim<-5000

X<-array(0,c(nsim,1))

for(i in 1:nsim)

{

u<-runif(1)

X[i]<-sum(cp<u)-1

}

hist(X)

• See also “Logarithmic”
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Negative Binomial Random Variables

• A Poisson generator can be used to get Negative Binomial random
variables since

Y ∼ Gamma(n, (1− p)/) and X|y ∼ Poisson(y)

implies
X ∼ Negative Binomial(n, p)
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Negative Binomial

nsim<-10000;n<-6;p<-.3;

y<-rgamma(nsim,n,p/(1-p));x<-rpois(nsim,y);

hist(x,main="Negative Binomial",freq=F,col="green",breaks=40)

par(new=T)

lines(1:50,dnbinom(1:50,n,p))
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Negative Binomial
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Mixture Representation

• The representation of the Negative Binomial is a particular case of a
mixture distribution

• A mixture represents a density as the marginal of another distribution:

f(x) =
∑

i

pifi(x)

• To generate from f(x)

◦ Choose fi with probability pi

◦ Generate an observation from fi
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Section 2.3: Accept-Reject Methods

• There are many distributions from which it is difficult, or even impos-
sible, to directly simulate by an inverse transform.

•Moreover, in some cases, we are not even able to represent the distri-
bution in a usable form, such as a transformation or a mixture.

•We thus turn to another class of methods that only requires us to know
the functional form of the density f of interest up to a multiplicative
constant

• The key to this method is to use a simpler (simulationwise) density g
from which the simulation is actually done. For a given density g—
called the instrumental or candidate density— there are thus many
densities f—called the target densities—which can be simulated this
way.
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The Accept-Reject Algorithm

1. Generate X ∼ g, U ∼ U[0,1] ;

2. Accept Y = X if U ≤ 1
M

f(X)
g(X) ;

3. Return to 1. otherwise.
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Accept-Reject: Produces Y ∼ f exactly.

• Generate X ∼ g, U ∼ Uniform[0, 1].

• Accept Y = X if U ≤ f(X)/Mg(X)

P (Y ≤ y|U ≤ f(X)

Mg(X)
) =

P (X ≤ y, U ≤ f(X)
Mg(X)

)

P (U ≤ f(X)
Mg(X))

=

∫ y

−∞
∫ f(x)/Mg(x)

0 du g(x)dx
∫∞
−∞
∫ f(x)/Mg(x)

0 du g(x)dx

=

∫ y

−∞
f(x)

Mg(x)
g(x)dx

∫∞
−∞

f(x)
Mg(x)du g(x)dx

= P (Y ≤ y)
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Two Interesting Properties of AR

•We can simulate from any density know up to a multiplicative con-
stant

◦ This is important in Bayesian calculations

◦ The posterior distribution

π(θ|x) ∝ f(x|θ)π(θ)

is only specified up to a normalizing constant

• The probability of acceptance is 1/M , and the expected number of
trials until acceptance is M
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Example: Beta Accept-Reject

• Generate Y ∼ beta(a, b).

• No direct method if a and b are not integers.

• Use a uniform candidate

• For a = 2.7 and b = 6.3

◦ Put the beta density fY (y) inside a box

◦ Box has sides 1 and c, where c ≥ maxy fY (y).

• If (U, V ) are independent uniform(0, 1) random variables

P (V ≤ y|U ≤ 1

c
fY (V )) = P (Y ≤ y)
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Example: Beta Accept-Reject - Uniform Candidate

• Acceptance Rate = 37%
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Example: Beta Accept-Reject - Uniform Candidate

• R program: BetaAR-1

a<-2.7; b<-6.3; c<-2.669;nsim<-2500;

#Generate u and v#

u<-runif(nsim);v<-runif(nsim);

#---------Generate Y, the beta random variable--------------#

test<-dbeta(v, a, b)/c; #density ratio

Y<-v*(u<test) #accepted values

Y<-Y[Y!=0] #eliminate zeros

length(Y)/nsim #percent accepted

#----------Plot---------------------------------------------#

par(mfrow=c(1,2))

hist(v)

hist(Y)

par(new=T)

plot(function(x)(dbeta(x, a, b)));

#------------------------------------------------------------
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Properties

• For c=2.669 the acceptance probability is 1/2.669 = .37 , so we accept
37%

• If we simulate from a beta(2,6), the bound is 1.67, so we accept 60%
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Example: Beta Accept-Reject - Beta Candidate

• Acceptance Rate ↑ with better candidate

• Direct generation of Beta(2, 6)

• Acceptance Rate = 60%
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Example: Beta Accept-Reject - Beta Candidate

• R program: BetaAR-2

a<-2.7; b<-6.3; c<-1.67;nsim<-2500;

#Generate u and v#

u<-runif(nsim);

v<-rbeta(nsim,2,6) #beta candidate

#---------Generate Y, the beta random variable--------------#

test<-dbeta(v, a, b)/(c*dbeta(v, 2, 6)); #density ratio

Y<-v*(u<test) #accepted values

Y<-Y[Y!=0] #eliminate zeros

length(Y)/nsim #percent accepted

#----------Plot---------------------------------------------#

par(mfrow=c(1,2))

hist(v)

par(new=T)

plot(function(x)(dbeta(x, 2, 6)))

hist(Y)

par(new=T)

plot(function(x)(dbeta(x, a, b)));

59



Monte Carlo Statistical Methods: Random Variable Generation [60]

Beta AR Generation - Some Intuition

• Uniform Candidate

• Accepted Values are Under Density
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Example: Normal from Cauchy

• Normal: f(x) = 1√
2π

exp(−x2/2)

• Cauchy: g(x) = 1
π

1
1+x2

• f/g =
√

π
2(1 + x2) exp(−x2/2) ≤

√

2π
e = 1.52

attained at x = ±1.

• Prob. of acceptance = 1/1.52=.66

•Mean number of trials to success = 1.52
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Example 2.18: Normals from Double Exponential

• Generate Normal(0, 1) from a Double Exponential with density

g(x|α) = (α/2) exp(−αx)

◦Minimum bound at α = 1

◦ Acceptance probability = .76
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Example 2.19: Gamma Random Variables - Non Integer
Shape

• Illustrates power of AR

• Gamma = sum of exponentials only if α an integer - no Chi Squared.

• Generate f(x) = 1
Γ(α)x

α−1e−x,

β = 1 without loss of generality.

• Candidate density g(x) = 1
Γ(a)bax

α−1e−x/b

• Then if α > a and b > 1

f(x)

g(x)
∝ xα−a

ba
e(1/b−1)x <∞.

• Take a = [α]. Then b = [α]/a minimizes M
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Example 2.20: Truncated Normal distributions

• Truncated normal distributions are very useful (censoring).

• For the constraint x > a, the density fa(x) is proportional to

fa(x) ∝ e
− 1

2σ2 (x−µ)2
I(x > a)

• Naive method: generate Y ∼ N(µ, σ2) until Y > a

• Can sometimes work, but requires, on the average, 1/Φ((µ − a)/σ)
simulations to get one random variable.

• For a = µ + 2σ, need 44 simulations for each acceptance.
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Truncated Normal distributions

• Better: Use a translated exponential distribution

g(x) ∝ αe−α(x−a)I(x > a)

• For a = µ + 2σ, need less than 12 simulations for each acceptance.
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Truncated Normal - Some Details

• The Accept-Reject ratio is

f(x)

g(x)
=

e
− 1

2σ2 (x−µ)2
I(x > a)

αe−α(x−a)I(x > a)

◦ These are unnormalized densities

◦We don’t need to worry about the constants

• If α > a

M = max
x>a

f(x)

g(x)
=

1

α
e

1
2(α2−2αa),

attained at x = α.

• Can further optimize by minimizing in α
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Truncated Normal - Some Details

• For simplicity, we will take α = a so that

M =
1

a
e−

1
2a2

• and
f(x)

Mg(x)
= a e−

1
2(x−a)2

• Now lets compare AR to “naive” simulation

◦ Generate 100 random variables

◦ Take a = 1 and a = 3.5
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Example: Truncated Normal

• Samples generated Naively and with AR

• Acceptance Rate very high for AR
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Chapter 3: Monte Carlo Integration

• Two major classes of numerical problems that arise in statistical infer-
ence

◦ optimization problems

◦ integration problems

• Although optimization is generally associated with the likelihood ap-
proach, and integration with the Bayesian approach, these are not strict
classifications
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Example 3.1 Bayes Estimator

• In general, the Bayes estimate under the loss function L(θ, δ) and the
prior π is the solution of the minimization program

min
δ

∫

Θ

L(θ, δ) π(θ) f(x|θ) dθ .

• Only when the loss function is the quadratic function ‖θ− δ‖2 will the
Bayes estimator be a posterior expectation.

• For L(θ, δ) = |θ − δ|, the Bayes estimator associated with π is the
posterior median of π(θ|x), δπ(x), which is the solution to the equation

∫

θ≤δπ(x)

π(θ) f(x|θ) dθ =

∫

θ≥δπ(x)

π(θ) f(x|θ) dθ .
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Section 3.2: Classical Monte Carlo Integration

• Generic problem of evaluating the integral

Ef [h(X)] =

∫

X
h(x) f(x) dx .

• Based on previous developments, it is natural to propose using a sample
(X1, . . . , Xm) generated from the density f

• Approximate the integral by the empirical average

• This approach is often referred to as the Monte Carlo method
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Strong Law

• For a sample (X1, . . . , Xm), the empirical average

hm =
1

m

m
∑

j=1

h(xj) ,

converges almost surely to

Ef [h(X)]

• This is the Strong Law of Large Numbers
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Central Limit Theorem

• Estimate the variance with

var(hm) =
1

m

∫

X
(h(x)− Ef [h(X)])2 f(x)dx

• For m large,
hm − Ef [h(X)]√

vm

is therefore approximately distributed as a N (0, 1) variable

• This leads to the construction of a convergence test and of confidence
bounds on the approximation of Ef [h(X)].
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Example 3.4: Monte Carlo Integration

• Recall the function that we saw in the Newton-Raphson example:

h(x) = [cos(50x) + sin(20x)]2

.

• To calculate the integral, we generate U1, U2, . . . , Un iid U(0, 1) ran-
dom variables, and approximate

∫

h(x)dx with
∑

h(Ui)/n.

• It is clear that the Monte Carlo average is converging, with value of
0.963 after 10, 000 iterations.
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nsim<-10000;u<-runif(nsim);

#The function to be integrated

mci.ex <- function(x){(cos(50*x)+sin(20*x))^2}

plot(function(x)mci.ex(x), xlim=c(0,1),ylim=c(0,4))

#The monte carlo sum

sum(mci.ex(u))/nsim
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Example 3.5: Normal CDF

• The approximation of

Φ(t) =

∫ t

−∞

1√
2π

e−y2/2dy

by the Monte Carlo method is

Φ̂(t) =
1

n

n
∑

i=1

Ixi≤t,

•With (exact) variance Φ(t)(1− Φ(t))/n

• The variables Ixi≤t are independent Bernoulli with success probability
Φ(t).

•Method breaks down for tail probabilities
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Section 3.3 Importance Sampling

• Simulation from the true density f is not necessarily optimal

• The method of importance sampling is an evaluation of Ef [h(X)]
based based on the alternative representation

Ef [h(X)] =

∫

X
h(x) f(x) dx =

∫

X
h(x)

f(x)

g(x)
g(x) dx ,

•We generate a sample X1, . . . , Xn from a given distribution g and
approximating

Ef [h(X)] ≈ 1

m

m
∑

j=1

f(Xj)

g(Xj)
h(Xj) .

• The Strong Law guarantees

1

m

m
∑

j=1

f(Xj)

g(Xj)
h(Xj)→ Ef [h(X)]
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Simple Example

• Gamma(3, 2/3) from Exponential(1)

nsim<-10000;

target <- function(x)((27/16)*(x^2)*exp(-3*x/2))

candidate<-function(x)(exp(-x))

plot(function(x)target(x),xlim=c(0,10))

par(new=T)

plot(function(x)candidate(x),xlab="",ylab="",xaxt="n",yaxt="n")

#Compute the mean and variance

y<-rexp(nsim);

m1<-sum(y*target(y)/candidate(y))/nsim

m2<-sum((y^2)*target(y)/candidate(y))/nsim

m1;m2-m1^2;

• Calculate: mean = 1.998896, var = 1.295856

• True: mean = 2, var = 1.33
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Example - Normal Tail Probabilities

• For a = 3.5, 4.5, 5.5, calculate P (Z > a) =
∫∞

a φ(x)dx

• “Naive” approach: Xi ∼ N(0, 1),
∫ ∞

a

φ(x)dx = EI(X > a)

so
1

n

n
∑

i=1

I(Xi > a)→
∫ ∞

a

φ(x)dx
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Example - Normal Tail Probabilities - 2

• Importance sampling: Xi ∼ g(x) = e−(x−a), x > a,
∫ ∞

a

φ(x)dx =

∫ ∞

a

[

φ(x)

g(x)

]

g(x) dx

so
1

n

n
∑

i=1

φ(Xi)

e−(Xi−a)
→
∫ ∞

a

φ(x)dx

• And one more....
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Example - Normal Tail Probabilities - 3

• Transform to Uniform
∫ ∞

a

φ(x)dx =

∫ 1/a

0

φ(1/y)

y2
dy, y = 1/x

• For Ui ∼ Uniform(0, 1/a) with density g(x) = a

1

n

n
∑

i=1

φ(1/Ui)

aU 2
i

→
∫ ∞

a

φ(x)dx

• Can monitor convergence with standard deviation

• R Program TruncatedIS

•Also - Multivariate Normal Tails

◦ R Program MultivariateTruncatedIS
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Importance Sampling Facts

• Candidate g needs to have heavier tails than target f

• The same sample g can be used for many targets f

◦ This cuts down error in Monte Carlo comparisons

• Alternative form
m
∑

j=1





f(Xj)

g(Xj)
∑

j
f(Xj)

g(Xj)



 h(Xj)

◦ Biased, but with smaller variance

◦ Often beats unbiased estimator in MSE

◦ Strong Law applies
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Example 3.13: Student’s t

•X ∼ T (ν, θ, σ2), with density

f(x) =
Γ((ν + 1)/2)

σ
√

νπ Γ(ν/2)

(

1 +
(x− θ)2

νσ2

)−(ν+1)/2

.

• Take θ = 0 and σ = 1.

• Estimate
∫ ∞

2.1

x5f(x)dx

• Candidates

◦ f itself

◦ Cauchy

◦ Normal

◦ Uniform(0, 1/2.1)
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Importance Sampling Comparisons

• f (solid), Cauchy (short dash), Normal (dots), Uniform(long dash)

• Uniform candidate the best
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• R program “Students-t-moment”
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Chapter 5: Monte Carlo Optimization

• Differences between the numerical approach and the simulation ap-
proach to the problem

max
θ∈Θ

h(θ)

lie in the treatment of the function h.

• In an optimization problem using deterministic numerical methods

◦ The analytical properties of the target function (convexity, bound-
edness, smoothness) are often paramount.

• For the simulation approach

◦We are concerned with h from a probabilistic (rather than analytical)
point of view.
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Monte Carlo Optimization

• The problem
max
θ∈Θ

h(θ)

• Deterministic numerical methods → analytical properties

• Simulation approach → probabilistic view.

◦ This dichotomy is somewhat artificial

◦ Some simulation approaches have no probabilistic interpretation

• Nonetheless, the use of the analytical properties of h plays a lesser role
in the simulation approach.
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Two Simulation Approaches

• Exploratory Approach

◦ Goal: To optimize h by describing its entire range

◦ Actual properties of h play a lesser role

• Probabilistic Approach

◦Monte Carlo exploits probabilistic properties of h

◦ This approach tied to missing data methods
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Section 5.2: Stochastic Exploration

• A first approach is to simulate from a uniform distribution on Θ,
u1, . . . , um ∼ UΘ,

• Use the approximation

h∗m = max(h(u1), . . . , h(um)).

• This method converges (as m goes to ∞), but it may be very slow
since it does not take into account any specific feature of h.

• Distributions other than the uniform, which can possibly be related to
h, may then do better.

• In particular, in setups where the likelihood function is extremely costly
to compute the number of evaluations of the function h is best kept
to a minimum.
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Example 5.2: A first Monte Carlo maximization

• Recall the function h(x) = [cos(50x) + sin(20x)]2.

• we try our näıve strategy and simulate u1, . . . , um ∼ U(0, 1), and use
the approximation h∗m = max(h(u1), . . . , h(um))
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Example 5.2: A first Monte Carlo maximization

#simple monte carlo optimization#

par(mfrow=c(1,2))

#The function to be optimized

mci <- function(x){(cos(50*x)+sin(20*x))^2}

plot(function(x)mci(x), xlim=c(0,1),ylim=c(0,4),lwd=2)

optimize(mci, c(0, 1), tol = 0.0001, maximum=TRUE)

#The monte carlo maximum

nsim<-5000;u<-runif(nsim);

max(mci(u))

plot(u,mci(u))

#The "exact" value is 3.8325#
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A Probabilistic Approach

• If h is positive with
∫

h <∞
◦ Finding max h is the same as

◦ Finding the modes of h

• h→ exp(h) makes h positive
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A Tough Minimization

• Consider minimizing

h(x, y) = (x sin(20y) + y sin(20x))2 cosh(sin(10x)x)

+ (x cos(10y)− y sin(10x))2 cosh(cos(20y)y) ,

whose global minimum is 0, attained at (x, y) = (0, 0)
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Properties

•Many local minima

• Standard methods may not find global minimum

•We can simulate from exp(−h(x, y))

• Get minimum from mini h(xi, yi)

• Can use other methods...
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Deterministic Gradient Methods

• The gradient method is a deterministic numerical approach to the
problem

max
θ∈Θ

h(θ).

• It produces a sequence (θj) that converges to the maximum when

• ◦ the domain Θ ⊂ ℜd

◦ the function (−h)

are both convex.

• The sequence (θj) is constructed in a recursive manner through

θj+1 = θj + αj∇h(θj) , αj > 0 ,

Here

◦ ∇h is the gradient of h

◦ αj is chosen to aid convergence
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Stochastic Variant

• There are stochastic variants of the gradient method

• They do not always go along the steepest slope

• This is an advantage, as it can avoid local maxima and saddlepoints

• The best, and simple version is Simulated Annealing/Metropolis Algo-
rithm
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Simulated Annealing

• This name is borrowed from Metallurgy:

• A metal manufactured by a slow decrease of temperature (annealing)
is stronger than a metal manufactured by a fast decrease of tempera-
ture.

• The fundamental idea of simulated annealing methods is that a change
of scale, called temperature, allows for faster moves on the surface of
the function h to maximize.

◦ Rescaling partially avoids the trapping attraction of local maxima.

◦ As T decreases toward 0, the values simulated from this distribution
become concentrated in a narrower and narrower neighborhood of
the local maxima of h
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Metropolis Algorithm/Simulated Annealing

• Simulation method proposed by Metropolis et al. (1953)

• Starting from θ0, ζ is generated from

ζ ∼ Uniform in a neighborhood of θ0.

• The new value of θ is generated as

θ1 =

{

ζ with probability ρ = exp(∆h/T ) ∧ 1

θ0 with probability 1− ρ,

◦ ∆h = h(ζ)− h(θ0)

◦ If h(ζ) ≥ h(θ0), ζ is accepted

◦ If h(ζ) < h(θ0), ζ may still be accepted

◦ This allows escape from local maxima
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Metropolis/Simulated Annealing Algorithm

• In its most usual implementation, the simulated annealing algorithm
modifies the temperature T at each iteration

• It has the form

1. Simulate ζ from an instrumental distribution

with density g(|ζ − θi|);
2. Accept θi+1 = ζ with probability

ρi = exp{∆hi/Ti} ∧ 1;

take θi+1 = θi otherwise.

3. Update Ti to Ti+1.
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Metropolis/Simulated Annealing Algorithm - Comments

1. Simulate ζ from an instrumental distribution

with density g(|ζ − θi|);
2. Accept θi+1 = ζ with probability

ρi = exp{∆hi/Ti} ∧ 1;

take θi+1 = θi otherwise.

3. Update Ti to Ti+1.

• All positive moves accepted

• As T ↓ 0

◦ Harder to accept downward moves

◦ No big downward moves

• Not a Markov Chain - difficult to analyze
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Simple Example Revisited

• Recall the function h(x) = [cos(50x) + sin(20x)]2

• The specific algorithm we use is

Starting at iteration t, the iteration is at (x(t), h(x(t))):

1. Simulate u ∼ U(at, bt) where at = max(x(t) − r, 0) and bt =
min(x(t) + r, 1)

2. Accept x(t+1) = u with probability

ρ(t) = min

{

exp

(

h(u)− h(x(t))

Tt

)

, 1

}

,

take x(t+1) = x(t) otherwise.

3. Update Tt to Tt+1.

◦ The value of r controls the size of the interval around the current point
(staying in (0, 1))

◦ The value of Tt controls the cooling.
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The Trajectory
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◦ Left Panel is the function

◦ Right Panel is the Simulated Annealing Trajectory
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R Program

par(mfrow=c(1,2))

#The function to be optimized

mci <- function(x){(cos(50*x)+sin(20*x))^2}

plot(function(x)mci(x), xlim=c(0,1),ylim=c(0,4),lwd=2)

#optimize(mci, c(0, 1), tol = 0.0001, maximum=TRUE)

#The monte carlo maximum

nsim<-2500

u<-runif(nsim)

#Simulated annealing

xval<-array(0,c(nsim,1));r<-.5

for(i in 2:nsim){

test<-runif(1, min=max(xval[i-1]-r,0),max=min(xval[i-1]+r,1));

delta<-mci(test)-mci(xval[i-1]);

rho<-min(exp(delta*log(i)/1),1);

xval[i]<-test*(u[i]<rho)+xval[i-1]*(u[i]>rho)

}

mci(xval[nsim])

plot(xval,mci(xval),type="l",lwd=2)
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Simulated Annealing Property

• Theorem 5.7: Under mild assumptions, the Simulated Annealing algo-
rithm is guaranteed to find the global maximum
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Return to the difficult maximization

• Apply simulated Annealing

• Different choices of Ti

◦ Results dependent on choice of Ti

◦ Ti ∝ 1/ log(i + 1) preferred
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Simulated Annealing Runs

• g ∼ Uniform(−.1, .1)

• Starting point (0.5, 0.4)

Case Ti θT h(θT ) mint h(θt) Accept. rate
1 1/10i (−1.94,−0.480) 0.198 4.02 10−7 0.9998
2 1/ log(1 + i) (−1.99,−0.133) 3.408 3.823× 10−7 0.96
3 100/ log(1 + i) (−0.575, 0.430) 0.0017 4.708× 10−9 0.6888
4 1/10 log(1 + i) (0.121,−0.150) 0.0359 2.382× 10−7 0.71

• Case 3 explores “valley” near the minimum

• Recommended Ti ≈ Γ/ log(i + 1) for large Γ
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Ti = 1/10i
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Ti = 1/ log(i + 1)
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Ti = 100/ log(i + 1)
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Section 5.3: Missing Data

•Methods that work directly with the objective function are less con-
cerned with fast exploration of the space

• Need to be concerned wheh approximating an objective function - we
may introduce an additional level of error

•Many of these methods work well in Missing data models, where the
likelihood g(x|θ) can be expressed as

g(x|θ) =

∫

Z
f(x, z|θ) dz

•More generally, the function h(x) to be optimized can be expressed as
the expectation

h(x) = E[H(x, Z)]
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Example 5.14: Censored data likelihood

• Observe Y1, . . ., Yn, iid, from f(y − θ)

• Order the observations so that y = (y1, · · · , ym) are uncensored and
(ym+1, . . . , yn) are censored (and equal to a).
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◦ The observed likelihood function is

L(θ|y) =
m
∏

i=1

[1− F (a− θ)]n−m f(yi − θ) ,

where F is the cdf associated with f .

◦ If we had observed the last n−m values, say z = (zm+1, . . . , zn), with
zi > a (i = m + 1, . . . , n), we could have constructed the complete
data likelihood

Lc(θ|y, z) =
m
∏

i=1

f(yi − θ)
n
∏

i=m+1

f(zi − θ),

with which it often is easier to work.

◦ Note that

L(θ|y) = E[Lc(θ|y,Z)] =

∫

Z
Lc(θ|y, z)f(z|y, θ) dz,

where f(z|y, θ) is the density of the missing data conditional on the
observed data.
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Three Likelihoods

• For f(y − θ) = N (θ, 1) three likelihoods are shown

◦ leftmost (dotted):values greater than 4.5 are replaced by the value
4.5

◦ center (solid): observed data likelihood

◦ rightmost (dashed): the actual data.

• Right panel: EM/MCEM algorithms
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Section 5.3.2: The EM Algorithm

• Dempster, Laird and Rubin (1977)

• Takes advantage of the representation

g(x|θ) =

∫

Z
f(x, z|θ) dz

◦ Solves a sequence of easier maximization problems

◦ Limit is the answer to the original problem

118



Monte Carlo Statistical Methods: Monte Carlo Optimization [119]

EM Details

• Observe X1, . . . , Xn, iid from g(x|θ) and want to compute

θ̂ = arg max L(θ|x) =
n
∏

i=1

g(xi|θ)

•We augment the data with z, where X,Z ∼ f(x, z|θ)

◦ Note the basic EM Identity

k(z|θ,x) =
f(x, z|θ)

g(x|θ)
,

where k(z|θ,x) is the conditional distribution of the missing data
Z given the observed data x.
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EM Details - continued

• The identity leads to the following relationship between the

◦ complete-data likelihood Lc(θ|x, z)

◦ observed data likelihood L(θ|x).

For any value θ0,

log L(θ|x) = Eθ0[log Lc(θ|x, z)]− Eθ0[log k(z|θ,x)],

where the expectation is with respect to k(z|θ0,x).

• To maximize log L(θ|x), we only have to deal with the first term on
the right side, as the other term can be ignored.
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EM Details - continued

• Note that

Eθ0[log Lc(θ|x, z)] =

∫

log Lc(θ|x, z)k(z|θ0,x)dz

• Given θ0,

◦ we then maximize Eθ0[log Lc(θ|x, z)] in θ

• A sequence of estimators θ̂(j), j = 1, 2, . . ., is obtained iteratively

Eθ̂(j−1)
[log Lc(θ̂(j)|x, z)] = max

θ
Eθ̂(j−1)

[log Lc(θ|x, z)].
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EM Details - continued

• The iteration contains both an expectation step and a maximization
step, giving the algorithm its name.

1. Compute
Eθ̂(m)

[log Lc(θ|x, z)] ,

where the expectation is with respect to k(z|θ̂m,x) (the E-step) .

2. Maximize Eθ̂(m)
[log Lc(θ|x, z)] in θ and take (the M-step)

θ(m+1) = arg max
θ

Eθ̂(m)
[log Lc(θ|x, z)].

• The iterations are conducted until a fixed point is obtained.
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EM Theorem

• Theoretical core of the EM Algorithm

◦ by maximizing Eθ̂(m)
[log Lc(θ|x, z)] at each step

◦ the observed data likelihood on the left is increased at each step.

Theorem 5.15

The sequence (θ̂(j)) satisfies

L(θ̂(j+1)|x) ≥ L(θ̂(j)|x).
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Genetic Linkage

• The classic missing data example

• 197 animals are distributed into four catagories

(x1, x2, x3, x4) = (125, 18, 20, 34)

and modeled with the multinomial distribution

M
(

n;
1

2
+

θ

4
,
1

4
(1− θ),

1

4
(1− θ),

θ

4

)

.

• Estimation is easier if the x1 cell is split into two cells, so we create
the augmented model

(z1, z2, x2, x3, x4) ∼M
(

n;
1

2
,
θ

4
,
1

4
(1− θ),

1

4
(1− θ),

θ

4

)

,

with x1 = z1 + z2.
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Genetic Linkage

• The observed likelihood function is proportional to
(

1

2
+

θ

4

)x1
(

1

4
(1− θ)

)x2+x3
(

θ

4

)x4

∝ (2 + θ)x1(1− θ)x2+x3θx4,

• and the complete-data likelihood function is
(

1

2

)z1
(

θ

4

)z2
(

1

4
(1− θ)

)x2+x3
(

θ

4

)x4

∝ θz2+x4(1− θ)x2+x3.

• The missing data density is

missing data density =
complete-data likelihood function

observed likelihood function
.
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Genetic Linkage

• The observed likelihood function ∝ (2 + θ)x1(1− θ)x2+x3θx4,

• and the complete-data likelihood function ∝ θz2+x4(1− θ)x2+x3.

• The missing data density is

θz2+x4(1− θ)x2+x3

(2 + θ)x1(1− θ)x2+x3θx4
∝
(

θ

2 + θ

)z2
(

2

2 + θ

)x1−z2

so Z2 ∼ binomial(x1,
θ

2+θ
).

Note that x2, x3, x4 cancel.
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Genetic Linkage

• For the EM algorithm, the expected complete log-likelihood function
is

Eθ0[(Z2 + x4) log θ + (x2 + x3) log(1− θ)]

=

(

θ0

2 + θ0
x1 + x4

)

log θ + (x2 + x3) log(1− θ).

• and the EM iterates are

θj+1 = argmaxθ

[(

θj

2 + θj
x1 + x4

)

log θ + (x2 + x3) log(1− θ)

]

=

θj

2+θj
x1 + x4

θj

2+θj
x1 + x2 + x3 + x4

.

• R program “GeneticEM”
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EM Sequence (and standard errors)
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Example 5.17: EM for censored data

• For Yi ∼ N (θ, 1), with censoring at a, the complete-data likelihood is

Lc(θ|y, z) ∝
m
∏

i=1

exp{−(yi − θ)2/2)}
n
∏

i=m+1

exp{(zi − θ)2/2}.

• The density of of the missing data z = (zn−m+1, . . . , zn) is a truncated
normal

Z ∼ k(z|θ,y) =
1

(2π)(n−m)/2
exp

{

n
∑

i=m+1

(zi − θ)2/2

}

,
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Censored EM - continued

• Complete-data log likekihood

−1

2

m
∑

i=1

(yi − θ)2 − 1

2

n
∑

i=n−m+1

Eθ′[(Zi − θ)2].

• Differentiate and set equal to zero, solving for the EM estimate

θ̂ =
mȳ + (n−m)Eθ′(Z1)

n
.

• Evaluate the expectation to get the EM sequence

θ̂(j+1) =
mȳ + (n−m)θ̂(j) + φ(a−θ̂(j))

1−Φ(a−θ̂(j))

n
,

where φ and Φ are the normal pdf and cdf, respectively.
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Section 5.3.3: Monte Carlo EM

• A difficulty with the implementation of the EM algorithm is that each
“E-step” requires the computation of the expected log likelihood

Eθ0(log Lc(θ|x, z)).

• To overcome this difficulty

◦ simulate Z1, . . . , Zm ∼ k(z|x, θ)

◦ maximize the approximate complete data log-likelihood

Êθ0(log Lc(θ|x, z)) =
1

m

m
∑

i=1

log Lc(θ|x, z) .
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Monte Carlo EM -2

•Maximize the approximate complete data log-likelihood

Êθ0(log Lc(θ|x, z)) =
1

m

m
∑

i=1

log Lc(θ|x, z) .

◦When m goes to infinity, this quantity converges to Eθ0(log Lc(θ|x, z))

◦ Thus, Monte Carlo EM → regular EM.
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Genetic Linkage

• For the Monte Carlo EM algorithm, we average the complete-data log
likelihood over z2

1

m

m
∑

i=1

log
[

θz2i+x4(1− θ)x2+x3
]

=

(

1

m

m
∑

i=1

z2i + x4

)

log(θ) + (x2 + x3) log(1− θ)

= (z̄2 + x4) log(θ) + (x2 + x3) log(1− θ),

where z̄2 = 1
m

∑m
i=1 z2i, z2i ∼ Binomial(x1, θ0/(2 + θ0)).
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Genetic Linkage

• The Monte Carlo MLE in θ is then the Beta MLE

θ̂ =
z2 + x4

z2 + x2 + x3 + x4
.

• For the EM sequence

θ̂(j+1) =
mȳ + (n−m)Eθ̂(j)(Z1)

n
,

• the MCEM solution replaces Eθ(j)(Z1) with

1

M

M
∑

i=1

Zi, Zi ∼ k(z|θ̂(j),y).
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Censored MCEM

• Complete-data log likekihood

−1

2

m
∑

i=1

(yi − θ)2 − 1

2

n
∑

i=n−m+1

Eθ′[(Zi − θ)2].

• Differentiate and set equal to zero, solving for the EM estimate

θ̂ =
mȳ + (n−m)Eθ′(Z1)

n
.

• Evaluate the expectation to get the MCEM sequence

θ̂(j+1) =
mȳ + (n−m) + Z̄

n
,

where Z̄ is the mean of (Z1, . . . , ZM)

(Z1, . . . , ZM) ∼ truncated normal with mean θ̂(j)
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EM and MCEM Sequence for censored data
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R program

xdata<-c(3.64, 2.78, 2.91,2.85,2.54,2.62,3.16,2.21,4.05,2.19,2.97,4.32,

3.56,3.39,3.59,4.13,4.21,1.68,3.88,4.33)

n<-25;m<-20;t0<-4;a<-4.5;nt<-50

xbar<-mean(xdata);that<-array(xbar,dim=c(nt,1));

for (j in 2:nt) {

that[j] <-(m/n)*xbar+(1-m/n)*(that[j-1]+dnorm(a-that[j-1])

/(1-pnorm(a-that[j-1])))}

#now do MCEM, z=missing data, nz=size of MC sample

tmc<-array(xbar,dim=c(nt,1));nz<-500;

for (j in 2:nt) {

z<-array(a-1,dim=c(nz,1));

for (k in 1:nz) {while(z[k] <a) z[k] <- rnorm(1,mean=tmc[j-1],sd=1)}

zbar<-mean(z)

tmc[j] <-(m/n)*xbar+(1-m/n)*zbar}

plot(that,type="l",xlim=c(0,nt),ylim=c(3.3,3.7),lwd=2)

par(new=T)

plot(tmc,type="l",xlim=c(0,nt),ylim=c(3.3,3.7),xlab="",

ylab="",xaxt="n",yaxt="n",lwd=2)
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EM Standard Errors

• Recall that the variance of the MLE, is approximated by

Var θ̂ ≈
[

∂2

∂θ2
E (log L(θ|x))

]−1

•We estimate this with

Var θ̂ ≈
[

∂2

∂θ2
log L(θ|x)

∣

∣

∣

∣

θ=θ̂

]−1

• For Genetic Linkage, the observed likelihood function ∝
(2 + θ)x1(1− θ)x2+x3θx4,

138



Monte Carlo Statistical Methods: Monte Carlo Optimization [139]

EM Standard Errors -2

• For Genetic Linkage, the observed likelihood function ∝
(2 + θ)x1(1− θ)x2+x3θx4,

• The variance is estimated with
[

d2

dθ2
(2 + θ)x1(1− θ)x2+x3θx4

∣

∣

∣

∣

θ=θ̂

]−1
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EM Sequence (and standard errors)
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MCEM Standard Errors

• The variance of the MLE, is approximated with the observed data
likelihood

Var θ̂ ≈
[

∂2

∂θ2
log L(θ|x)

]−1

• Oakes (1999) expressed this wih only the complete-data likelihood

∂2

∂θ2
log L(θ|x)

=

{

∂2

∂θ′2
E[log L(θ′|x, z)|θ] +

∂2

∂θ′∂θ
E[log L(θ′|x, z)|θ]

}∣

∣

∣

∣

θ′=θ

with expectation under the missing data distribution.

• This expression only involves the complete data likelihood!
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• But, the expression is not good for simulation.

•With effort, we can write this as

∂2

∂θ2
log L(θ|x) = E

(

∂2

∂θ2
log L(θ|x, z)

∣

∣

∣

∣

θ

)

+var

(

∂

∂θ
log L(θ|x, z)

∣

∣

∣

∣

θ

)

.

• This allows the Monte Carlo evaluation

∂2

∂θ2
log L(θ|x)

=
1

M

M
∑

j=1

∂2

∂θ2
log L(θ|x, z(j))

+
1

M

M
∑

j=1





∂

∂θ
log L(θ|x, z(j))− 1

M

M
∑

j′=1

∂

∂θ
log L(θ|x, z(j′))





2

,

where (z(j)), j = 1, . . . ,M are generated from the missing data dis-
tribution (and have already been generated to do MCEM).
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Chapter 6: Markov Chains

• A Markov chain is a sequence of random variables that can be thought
of as evolving over time

• The probability of a transition depends on the particular set the chain
is in.

•We define a Markov chain by its transition kernel

◦When X is discrete, the transition kernel simply is a (transition
matrix K with elements

Pxy = P (Xn = y|Xn−1 = x) , x, y ∈ X .

◦ In the continuous case, the kernel also denotes the conditional den-
sity K(x, x′) P (X ∈ A|x) =

∫

A K(x, x′)dx′ =
∫

A f(x′|x)dx′.

143



Monte Carlo Statistical Methods: Markov Chains [144]

Section 6.1: Essentials of MCMC

• In the setup of MCMC algorithms, Markov chains are constructed from
a transition kernel K, a conditional probability density

Xn+1 ∼ K(Xn, Xn+1).

• An example is a random walk

Xn+1 = Xn + ǫn

where ǫn is generated independently of Xn, Xn−1, . . ..

• If ǫn is symmetric about zero, the sequence is called a symmetric ran-

dom walk
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Example 6.6: AR(1) Models

• AR(1) models provide a simple illustration of Markov chains on con-
tinuous state-space

• Here
Xn = θXn−1 + εn , θ ∈ ℜ,

with εn ∼ N(0, σ2)

• If the εn’s are independent, Xn is independent from Xn−2, Xn−3, . . .
conditionally on Xn−1.

145



Monte Carlo Statistical Methods: Markov Chains [146]

Essentials of MCMC - continued

• The chains encountered in MCMC settings enjoy a very strong stability
property

• The stationary distribution, or the marginal distribution always exists.

◦ The stationary distribution π satisfies

Xn ∼ π ⇒ Xn+1 ∼ π,
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AR(1) Stationary Distribution

• The stationary distribution φ(x|µ, τ 2)must satisfy
∫

φ(xn|θxn−1, σ
2)× φ(xn−1|µ, τ 2)dxn−1 = φ(xn|µ, τ 2)

• Evaluating the integral yields

EXn = µ = θµ and VarXn = τ 2 = σ2 + θ2τ 2

• Therefore

µ = 0 and τ 2 =
σ2

1− θ2

which requires |θ| < 1.
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Essentials - continued

• If the kernel allows for free moves over the entire state space, the chain
is irreducible

• This also insures that the chains are positive recurrent, that is, they
visit every set infinitely often.

• The stationary distribution is also a limiting distribution in the sense
that the limiting distribution of Xn+1 is π

148



Monte Carlo Statistical Methods: Markov Chains [149]

Essentials - continued

• An irreducible, positive recurrent Markov chain is ergodic, that is, it
converges.

• In a simulation setup, a consequence of this convergence property is
that the average

1

N

N
∑

n=1

h(Xn)→ Eπ[h(X)]

almost surely.

• Under a slightly stronger assumption a Central Limit Theorem also
holds for this average
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Essentials - continued

• As a final essential, we associate the probabilistic language of Markov
chains with the statistical language of data analysis.

Statistics Markov Chain
marginal distribution ⇔ invariant distribution
proper marginals ⇔ positive recurrent

• If the marginals are not proper, or if they do not exist, then the chain
is not positive recurrent. It is either null recurrent or transient, and
both are bad.
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AR(1) Recurrent and Transient -Note the Scale

−3 −1 0 1 2 3

−3
−1

1
2

3

θ = 0.4

x

yp
lo

t
−4 −2 0 2 4

−4
−2

0
2

4

θ = 0.8

x

yp
lo

t

−20 −10 0 10 20

−2
0

0
10

20

θ = 0.95

x

yp
lo

t

−20 −10 0 10 20

−2
0

0
10

20

θ = 1.001

x

yp
lo

t

151



Monte Carlo Statistical Methods: The Metropolis-Hastings Algorithm [152]

Chapter 7: The Metropolis-Hastings Algorithm

Section 7.1: The MCMC Principle

• It is not necessary to directly simulate from f to calculate
∫

h(x)f(x)dx

• Now we obtain

◦X1, . . . , Xn ∼ approx f without simulating from f

◦ Use an ergodic Markov Chain
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Working Principle of MCMC Algorithms

• For an arbitrary starting value x(0), a chain (X (t)) is generated using
a transition kernel with stationary distribution f

• This ensures the convergence in distribution of (X (t)) to a random
variable from f

• Given that the chain is ergodic, the starting value x(0) is, in principle,
unimportant.

Definition A Markov chain Monte Carlo (MCMC) method for the
simulation of a distribution f is any method producing an ergodic Markov
chain (X (t)) whose stationary distribution is f .
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Section 7.3: The Metropolis-Hastings Algorithm

• The algorithm starts with and target density f

• A candidate density q(y|x)

• The ratio
f(x)

q(y|x)

must be known up to a constant.

154



Monte Carlo Statistical Methods: The Metropolis-Hastings Algorithm [155]

The Algorithm

• The Metropolis–Hastings algorithm associated with the objective (tar-
get) density f and the conditional density q produces a Markov chain
(X (t)) through the following transition:

1. Generate Yt ∼ q(y|x(t)).

2. Take

X (t+1) =

{

Yt with probability ρ(x(t), Yt),

x(t) with probability 1− ρ(x(t), Yt),

where

ρ(x, y) = min

{

f(y)

f(x)

q(x|y)

q(y|x)
, 1

}

.
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MH Properties

• This algorithm always accepts values yt such that the ratio f(yt)/q(yt|x(t))
is increased

• It may accept values yt such that the ratio is decreased, similar to
stochastic optimization

• Like the Accept–Reject method, the Metropolis–Hastings algorithm
only depends on the ratios

f(yt)/f(x(t)) and q(x(t)|yt)/q(yt|x(t))

and is, therefore, independent of normalizing constants
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MH Properties - continued

• There are similarities between MH and the Accept–Reject methods

• A sample produced by MH differs from an iid sample.

◦ For one thing, such a sample may involve repeated occurrences of
the same value

◦ Rejection of Yt leads to repetition of X (t) at time t + 1
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MH Properties - continued

• It is necessary to impose minimal regularity conditions on both f and
the conditional distribution q for f to be the limiting distribution of
the chain (X (t))

• ◦ The support of f should be connected

◦ It is better that supx f(x)/q(x|x′) <∞
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MH Convergence

• Under mild conditions, MH is a reversible, ergodic Markov Chain, hence
it converges

• ◦ The empirical sums 1
M

∑

h(Xi) converge

◦ The CLT is satisfied
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Section 7.4: The Independent MH Algorithm

• the instrumental distribution q is independent of X (t) and is denoted
g by analogy. Given x(t)

(a) Generate Yt ∼ g(y).

(b) Take

X (t+1) =











Yt with probability min

{

f(Yt) g(x(t))

f(x(t)) g(Yt)
, 1

}

x(t) otherwise.

• Although the Yt’s are generated independently, the resulting sample is
not iid, if only because the probability of acceptance of Yt depends on
X (t)
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Example 7.10: Generating Gamma Variables

• Generate Ga(α, β) using a Gamma Ga([α], b) candidate (where [a]
denotes the integer part of a).

• Take β = 1

1. Generate Yt ∼ Ga([α], [α]/α).

2. Take

X (t+1) =

{

Yt with probability ̺t

x(t) otherwise,

where

̺t = min

[

(

Yt

x(t)
exp

{

x(t) − Yt

α

})α−[α]

, 1

]

.
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Example 7.11: Logistic Regression

• Return to the Challenger Data

•We observe (xi, yi), i = 1, . . . , n according to the model

Yi ∼ Bernoulli(p(xi)), p(x) =
exp(α + βx)

1 + exp(α + βx)
,

where p(x) is the probability of an O-ring failure at temperature x.

◦ The likelihood is

L(α, β|y) ∝
n
∏

i=1

(

exp(α + βxi)

1 + exp(α + βxi)

)yi
(

1

1 + exp(α + βxi)

)1−yi

◦ and we take the prior to be

πα(α|b)πβ(β) =
1

b
eαe−eα/bdαdβ,
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Logistic Regression - continued

• The prior

πα(α|b)πβ(β) =
1

b
eαe−eα/bdαdβ,

◦ puts an exponential prior on log α

◦ a flat prior on β

◦ insures propriety of the posterior distribution

• Choose b so that Eα = α̂, where α̂ is the MLE of α
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Logistic Regression - continued

• The posterior distribution is proportional to L(α, β|y)π(α, β)

• To simulate from this distribution we take an independent candidate

g(α, β) = πα(α|b̂)φ(β),

where φ(β) is a normal distribution with mean β̂ and variance σ̂2
β, the

MLEs.

◦ Note that although basing the prior distribution on the data is some-
what in violation of the formal Bayesian paradigm, nothing is vio-
lated if the candidate depends on the data.

◦ In fact, this will usually result in a more effective simulation, as the
candidate is placed close to the target.
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Logistic Regression - continued

• Generating a random variable from g(α, β) is straightforward

• If we are at the point (α0, β0) in the Markov chain, and we generate
(α′, β′) from g(α, β), we accept the candidate with probability

min

{

L(α′, β′|y)

L(α0, β0|y)

φ(β0)

φ(β′)
, 1

}

.

165



Monte Carlo Statistical Methods: The Metropolis-Hastings Algorithm [166]

Logistic Regression - continued

• Estimation of the slope and intercept from the Challenger logistic re-
gression. The top panels show histograms of the distribution of the co-
efficients, while the bottom panels show the convergence of the means.
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Logistic Regression - continued

• Estimation of the failure probabilities from the Challenger logistic re-
gression. The left panel is for 65o Fahrenheit and the right panel is for
40o.

•We can run the programs
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Section 7.5 Random Walk Metropolis

• Take into account the value previously simulated to generate the fol-
lowing value

• This idea is already used in algorithms such as the simulated annealing

◦ Since the candidate g in the MH algorithm is allowed to depend on
the current state X (t), a first choice to consider is to simulate Yt

according to
Yt = X (t) + εt,

where εt is a random perturbation with distribution g, independent
of X (t).

◦ q(y|x) is now of the form g(y − x)

◦ The Markov chain associated with q is a random walk
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Random Walk Metropolis - continued

• The choice of a symmetric function g (that is, such that g(−t) =
g(t)), leads to the following random walk MH algorithm

Given x(t),

(a) Generate Yt ∼ g(|y − x(t)|).
(b) Take

X (t+1) =











Yt with probability min

{

1,
f(Yt)

f(x(t))

}

x(t) otherwise.

169



Monte Carlo Statistical Methods: The Metropolis-Hastings Algorithm [170]

Random Walk Metropolis - continued

• Hastings (1970) considers the generation of the normal distribution
N (0, 1) based on the uniform distribution on [−δ, δ]

• The algorithm: At time t

(a) Generate Y = Xt + U

(b)

ρ = min
{

e−.5(Y 2−X2
t ), 1
}

(c)

Xt+1 =

{

Y with probability ρ
Xt otherwise

• Three samples of 20, 000 points produced by this method for δ =
0.1, 0.5, and 1.

• R program “Hastings”
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Random Walk Metropolis - continued
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• Note the convergence for larger ranges

• R program “RandomWalkMet”
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Random Walk Metropolis - 3

• Explaining the behavior

• The Random Walk

Y = Xt + U, U ∼ U(−δ, δ)

has high autocorrelation for small δ

• High Autocorrelation → Poor Mixing

• Look at Autocorrelation for δ = 0.1, 0.5, and 1.

• R program “RandomWalkMetAC”
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Random Walk Metropolis - 4
Histogram of x[i, ]
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• Smaller Autocorrelation for larger ranges

• R program “RandomWalkMetAC”
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Chapter 9: The Two Stage Gibbs Sampler

• The implementation of the two-stage Gibbs sampler is straightforward.

• Suppose that the random variables X and Y have joint density f(x, y)

• The two-stage Gibbs sampler generates a Markov chain (Xt, Yt) ac-
cording to the following steps:

Take X0 = x0

For t = 1, 2, . . . , generate

1. Yt ∼ fY |X(·|xt−1);

2. Xt ∼ fX|Y (·|yt) .

where fY |X and fX|Y are the conditional distributions associated with
f

◦ Then (Xt, Yt)→ (X,Y ) ∼ f(x, y)

◦Xt → X ∼ f(x)

◦ Yt → Y ∼ f(y)
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Example 9.1: Normal Bivariate Gibbs

• For the special case of the bivariate normal density,

(X, Y ) ∼ N2

(

0,

(

1 ρ
ρ 1

))

,

• The Gibbs sampler is

Given yt, generate

Xt+1 | yt ∼ N (ρyt, 1− ρ2) ,

Yt+1 | xt+1 ∼ N (ρxt+1, 1− ρ2).

◦ The Gibbs sampler is obviously not necessary in this particular case

◦ The marginal Markov chain in X is defined by the AR(1) relation

Xt+1 = ρ2Xt + σǫt, ǫt ∼ N (0, 1) ,

with σ2 = 1− ρ2 + ρ2(1− ρ2) = 1− ρ4.

◦ The stationary distribution of this chain is N
(

0, 1−ρ4

1−ρ4

)

.
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Gibbs Sampler: Missing Data

• Gibbs works well in missing data models

•We start with a marginal density fX(x) and construct (or complete)
a joint density to aid in simulation

• Like the case of the EM algorithm

◦ In missing data models we write

g(x|θ) =

∫

Z
f(x, z|θ) dz

◦Which results in the Gibbs sampler

θ ∼ f(x, z|θ)
∫

Θ f(x, z|θ)

Z ∼ f(x, z|θ)
∫

Z f(x, z|θ)
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Example 9.7: Grouped counting data

• For 360 consecutive time units, consider recording the number of pas-
sages of individuals, per unit time, past some sensor.

◦ the number of cars observed at a crossroad

◦ number of leucocytes in a region of a blood sample

• Hypothetical results are

Number of 0 1 2 3 4
passages or more

Number of 139 128 55 25 13
observations
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Poisson Bayes completion

• Assume Poisson P(λ) model

• The observed data likelihood is

ℓ(λ|x1, . . . , x5) ∝ e−347λλ128+55×2+25×3

(

1− e−λ
3
∑

i=0

λi

i!

)13

,

for x1 = 139, . . . , x5 = 13.

• Complete the data with

z = (z1, . . . , z13)
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Poisson Bayes completion

• Start with x = observed data, z = missing data, then

X|λ ∼
347
∏

i=1

e−λλxi

xi!

Z|, λ,x ∼
13
∏

i=1

e−λλzi

zi!
I(zi ≥ 4).

• The joint distribution is

e−360λλ
∑

i xi+
∑

i zi

∏

i xi!
∏

i zi!

∏

i

I(zi ≥ 4)
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Poisson Bayes completion

• For π(λ) ∝ 1/λ, the full conditionals are

Z|λ,x ∼ Truncated Poisson(λ)

λ|z,x ∼ Gamma(
∑

i

xi +
∑

i

zi + 1, 1/360)

• A Gibbs sampler in λ and z can do the calculations

• Given λ(t−1),

1. Simulate Y
(t)
i ∼ P(λ(t−1)) Iy≥4 (i = 1, . . . , 13)

2. Simulate

λ(t) ∼ Ga
(

313 +
13
∑

i=1

y
(t)
i , 360

)

.
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Poisson Bayes Gibbs Sampler R code

nsim<-500;lam<-array(313/360,dim=c(nsim,1));y<-array(0,dim=c(13,1));

for (j in 2:nsim) {

for(i in 1:13){while(y[i] < 4) y[i] <- rpois(1,lam[j -1])};a<-313+sum(y);

lam[j]<-rgamma(1,a,scale=1/360);

y<-y*0;

}

den<-1:(nsim)

meanlam<-cumsum(lam)/den;

par(mfrow=c(1,2))

plot(meanlam,type="l",ylim=c(.9,1.1),xlab="iteration",

ylab="estimate",col="red")

hist(lam,main="Mean",freq=F,col="green")

R program “PoissonCompletion”
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Poisson Bayes Gibbs Sampler Output
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Two Estimators of Lambda

• Output from the Gibbs Sampler

Z|λ,x ∼ Truncated Poisson(λ)

λ|z,x ∼ Gamma(
∑

i

xi +
∑

i

zi + 1, 1/360)

• Estimate λ with the Empirical Average,

1

M

M
∑

j=1

λ(j)

• or the Conditional Expectation

δrb =
1

M

M
∑

j=1

E
[

λ
∣

∣x, z(j)
]

=
1

360M

M
∑

j=1

(

313 +
13
∑

i=1

z
(j)
i

)

,
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Two Estimators of Lambda -2

• or the Conditional Expectation

δrb =
1

M

M
∑

j=1

E
[

λ
∣

∣x, z(j)
]

=
1

360M

M
∑

j=1

(

313 +

13
∑

i=1

z
(j)
i

)

,

◦ “Rao-Blackwellized”

◦ Typically Smoother

• Convergence Diagnostic → Both estimators converge

◦ R program “PoissonCompletion2”

◦ See R program “PoissonCompletion3” to eliminate “while”
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Poisson Gibbs Sampler - Convergence of Estimators
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Poisson EM Algorithm

• There is a corresponding EM algorithm: For the observed data likeli-
hood

L(λ|x1, . . . , x5) ∝ e−347λλ313

(

1− e−λ
3
∑

i=0

λi

i!

)13

,

•We have the complete data likelihood

L(λ|x1, . . . , x5, z) ∝ e−347λλ313

(

e−13λ
13
∏

i=1

λzi

zi!

)

,

•With expected log likelihood

log L ∝ −360λ + (313 + E[
∑

i

zi]) log λ
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Poisson EM Algorithm

• from the expected log likelihood

log ℓ ∝ −360λ + (313 + E[
∑

i

zi]) log λ

•We get the Monte Carlo EM iteration

λ(t+1) =
1

360
(313 + 13Eλ(t)[Zi])

◦ where
Zi ∼ P(λ(t)).
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Poisson EM Algorithm R code

nsim<-50;lam<-array(313/360,dim=c(nsim,1));ybar<-array(4,dim=c(nsim,1))

#Use m values for the mean

m<-25;y<-array(0,dim=c(m,1));

for (j in 2:nsim) {

for(i in 1:m){while(y[i] < 4) y[i] <- rpois(1,lam[j -1])};

ybar[j]<-mean(y);

lam[j]<-(313+13*ybar[j])/360;

y<-y*0;

}

par(mfrow=c(1,2))

hist(ybar,col="green",breaks=10)

plot(lam,col="red",type="l",ylim=c(.95,1.05))
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Poisson EM Output
Histogram of ybar
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Section 9.4: The EM–Gibbs Connection

• The is a General EM/Gibbs relationship

•X ∼ g(x|θ) is the observed data

• Z ∼ f(x, z|θ) is the augmented data

•We have the complete-data and incomplete-data likelihoods

Lc(θ|x, z) = f(x, z|θ) and L(θ|x) = g(x|θ) ,

with the missing data density

k(z|x, θ) =
Lc(θ|x, z)

L(θ|x)
.
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The EM–Gibbs Connection

• If we can normalize the complete-data likelihood in θ

• That is, if
∫

Lc(θ|x, z)dθ <∞
• Define

L∗(θ|x, z) =
Lc(θ|x, z)

∫

Lc(θ|x, z)dθ

and create the two-stage Gibbs sampler:

1. z|θ ∼ k(z|x, θ)

2. θ|z ∼ L∗(θ|x, z)

• Note the direct connection to an EM algorithm based on Lc and k.
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Remember Genetic Linkage

• The observed likelihood function is proportional to
(

1

2
+

θ

4

)x1
(

1

4
(1− θ)

)x2+x3
(

θ

4

)x4

∝ (2 + θ)x1(1− θ)x2+x3θx4,

• and the complete-data likelihood function is
(

1

2

)z1
(

θ

4

)z2
(

1

4
(1− θ)

)x2+x3
(

θ

4

)x4

∝ θz2+x4(1− θ)x2+x3.

• The missing data density is

missing data density =
complete-data likelihood function

observed likelihood function
.
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Genetic Linkage

• To Gibbs sample this (with a uniform prior on θ) use

θ|x, z2 ∝ θz2+x4(1− θ)x2+x3 = Beta(z2 + x4 + 1, x2 + x3 + 1)

z2|x, θ ∝ θz2+x4(1− θ)x2+x3 = Binomial(x1,
θ

2 + θ
)
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Example 9.21: Censored Data Gibbs

• For the censored data example, the distribution of the missing data is

Zi ∼
φ(z − θ)

1− Φ(a− θ)

and the distribution of θ|x, z is

L(θ|x, z) ∝
m
∏

i=1

e−(xi−θ)2/2
n
∏

i=m+1

e−(zi−θ)2/2 ,

which corresponds to a

N
(

mx̄ + (n−m)z̄

n
,
1

n

)

distribution and so we immediately have that L∗ exists and that we
can run a Gibbs sampler

• R program → censoredGibbs

◦ Generate Z with Accept-Reject
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Example 9.21: Censored Data Gibbs
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Examples 5.18 and 9.22: Cellular Phone Plans

• It is typical for cellular phone companies to offer “plans” of options,
bundling together four or five options

• One cellular company had offered a four-option plan in some areas, and
a five-option plan (which included the four, plus one more) in another
area

• In each area, customers were ask to choose their favorite option, and
the results were tabulated. In some areas they choose their favorite
from four plans, and in some areas from five plans.

• The phone company is interested in knowing which are the popular
plans, to help them set future prices.
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Cellular Phone: The Data

• Cellular phone plan preferences in 37 areas: Data are number of cus-
tomers who choose the particular plan as their favorite.

Plan Plan
1 2 3 4 5 1 2 3 4 5

1 26 63 20 0 − 20 56 18 29 5 −
2 31 14 16 51 − 21 27 53 10 0 −
3 41 28 34 10 − 22 47 29 4 11 −
4 27 29 19 25 − 23 43 66 6 1 −
5 26 48 41 0 − 24 14 30 23 23 6
6 30 45 12 14 − 25 4 24 24 32 7
7 53 39 12 11 − 26 11 30 22 23 8
... ... ... ... ... ...
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Cellular Phones: EM - 1

•We can model the complete data as follows. In area i, there are ni

customers, each of whom chooses their favorite plan from Plans 1− 5.

◦ The observation for customer i is

Yi = (Yi1, . . . , Yi5), where Yi ∼M(1, (p1, p2, . . . , p5)).

◦ If we assume the customers are independent, in area i the data are

Ti = (Ti1, . . . , Ti5) =

ni
∑

j=1

Yi ∼M(ni, (p1, p2, . . . , p5))
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Cellular Phones: EM - 2

• If the first m observations have the Yi5 missing, denote the missing
data by zi and then we have the complete data likelihood

L(p|T, z) =

m
∏

i=1

(

ni + zi

Ti1, . . . , Ti4, zi

)

pTi1
1 · · · pTi4

4 pzi
5 ×

n
∏

i=m+1

(

ni

Ti1, . . . , Ti5

) 5
∏

j=1

p
Tij

j

where

◦ p = (p1, p2, . . . , p5),

◦ T = (T1, T2, . . . , T5),

◦ z = (z1, z2, . . . , zm), and

◦
(

n
n1,n2,...,nk

)

is the multinomial coefficient n!
n1!n2!···nk!.
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Cellular Phones: EM - 3

• The observed data likelihood can be calculated as

L(p|T) =
∑

z

L(p|T, z)

leading to the missing data distribution

k(z|T,p) =

m
∏

i=1

(

ni + zi

zi

)

pzi
5 (1− p5)

ni+1,

a product of negative binomial distributions.
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Cellular Phones: EM - 4

• Define

◦Wj =
∑n

i=1 Tij for j = 1, . . . , 4, and

◦W5 =
∑m

i=1 Ti5 for j = 5.

• The expected complete data log likelihood is

4
∑

j=1

Wj log pj + [W5 +
m
∑

i=1

E(Zi|p′)] log(1− p1 − p2 − p3 − p4).
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Cellular Phones: EM -5

• The expected complete data log likelihood is

4
∑

j=1

Wj log pj + [W5 +
m
∑

i=1

E(Zi|p′)] log(1− p1 − p2 − p3 − p4).

• leading to the EM iterations

E(Zi|p(t)) = (ni+1)
p̂

(t)
5

1− p̂
(t)
5

, p̂
(t+1)
j =

Wj
∑m

i=1 E(Zi|p(t)) +
∑5

j′=1 Wj′

for j = 1, . . . , 4.
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Cellular Phones: EM

• The MLE of p is (0.273, 0.329, 0.148, 0.125, 0.125); convergence is
very rapid.

• EM sequence for cellular phone data, 25 iterations
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Cellular phone Gibbs

• Now we use the Gibbs sampler to get our solution. From the complete
data likelihood and the missing data distribution we have

p|W1, W2, . . . ,W5,
∑

i

Zi ∼ D(W1 + 1,W2 + 1, . . . ,W5 +
∑

i

Zi + 1)

∑

i

Zi ∼ N eg

(

m
∑

i=1

ni + m, 1− p5

)

.

• The point estimates agree with those of the EM algorithm, p̂ = (0.258,
0.313, 0.140, 0.118, 0.170), with the exception of p̂5, which is larger
than the MLE.
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Cellular phone Gibbs

• Gibbs output for cellular phone data, 5000 iterations
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Section 9.1.4: The Hammersley–Clifford Theorem

• A most surprising feature of the Gibbs sampler is that the

◦ conditional distributions contain sufficient information to produce a
sample from the joint distribution.

• This is the case for both two-stage and multi-stage Gibbs

◦ The full conditional distributions perfectly summarize the joint den-
sity,

◦ although the set of marginal distributions obviously fails to do so
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The Hammersley–Clifford Theorem

• The following result then shows that the joint density can be directly
and constructively derived from the conditional densities.

Theorem: The joint distribution associated with the conditional den-
sities fY |X(y|x) and fX|Y (x|y) has the joint density

f(x, y) =
fY |X(y|x)

∫ [

fY |X(y|x)/fX|Y (x|y)
]

dy
.

• Note that the joint is written using conditionals
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The Hammersley–Clifford Theorem – Proof

• f(x, y) = f(x|y)f(y) = f(y|x)f(x), so

• f(y)
f(x)

= f(y|x)
f(x|y)

, and

•
∫ f(y)

f(x) dy = 1
f(x) =

∫ f(y|x)
f(x|y) dy

• So the marginal is written only with conditionals and

f(x, y) = f(y|x)f(x) =
f(y|x)
∫ f(y|x)

f(x|y)
dy
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The Multi-Stage Gibbs Sampler

• Suppose that for some p > 1, the random variable X ∈ X can be
written as X = (X1, . . . , Xp), where the Xi’s are either uni- or mul-
tidimensional.

•Moreover, suppose that we can simulate from the corresponding uni-
variate conditional densities f1, . . . , fp, that is, we can simulate

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp ∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p.
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The Multi-Stage Gibbs Sampler

Given x(t) = (x
(t)
1 , . . . , x

(t)
p ), generate

1. X
(t+1)
1 ∼ f1(x1|x(t)

2 , . . . , x
(t)
p );

2. X
(t+1)
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p ),

...

p. X
(t+1)
p ∼ fp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 ).

• The densities f1, . . . , fp are called the full conditionals

• These are the only densities used for simulation, even in a high-dimensional
problem.
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Hierarchical Models - Introduction

• A hierarchical model is of the form

X ∼ f(x|θ)

θ ∼ g(θ|β)

β ∼ h(β|λ)

λ ∼ k(λ)

◦ All hyperparameters specified at deepest level

◦ Effect of deeper hyperparameters is lower

• Easy to get joint distribution

• Easy to pick off full conditionals

211



Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [212]

Hierarchical Models - Introduction - 2

• Hierarchical Model

X ∼ f(x|θ)

θ ∼ π(θ|β)

β ∼ π(β|λ)

λ ∼ π(λ)

• Joint distribution

f(x|θ)× π(θ|β)× π(β|λ)× π(λ)

• Full Conditionals

π(θ|x, β, λ) ∝ terms in joint involving θ

etc...
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Hierarchical Models - Introduction - 3

• Normal Hierarchical Model (Conjugate)

X ∼ N(θ, σ2)

θ ∼ N(θ0, τ
2σ2)

σ2 ∼ Inverted Gamma(a, b)

• Here θ0, τ
2, a, b are specified

◦ Usual to take τ 2 ≈ 10 (variance ratio)

◦ Choose a, b to give prior a big variance
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [214]

Normal Hierarchical Models

• Normal Hierarchical Model

Xi ∼ N(θ, σ2), i = 1, . . . , n

θ ∼ N(θ0, τ
2σ2)

σ2 ∼ Inverted Gamma(a, b)

• Joint Distribution

f(x, θ, σ2) ∝
[

1

σ
e−

∑

i(xi−θ)2/(2σ2)

]

×
[

1

τσ
e−(θ−θ0)

2/(2τ2σ2)

]

×
[

1

(σ2)a+1
e1/bσ2

]
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [215]

Normal Hierarchical Models -2

• Joint Distribution

f(x, θ, σ2) ∝
[

1

σ
e−

∑

i(xi−θ)2/(2σ2)

]

×
[

1

τσ
e−(θ−θ0)

2/(2τ2σ2)

]

×
[

1

(σ2)a+1
e1/bσ2

]

• θ full conditional

π(θ|x, σ2) ∝
[

1

σ
e−

∑

i(xi−θ)2/(2σ2)

]

×
[

1

τσ
e−(θ−θ0)

2/(2τ2σ2)

]

×
[

1

(σ2)a+1
e1/bσ2

]

= Normal

• σ2 full conditional

π(σ2|x, θ) ∝
[

1

σ
e−

∑

i(xi−θ)2/(2σ2)

]

×
[

1

τσ
e−(θ−θ0)

2/(2τ2σ2)

]

×
[

1

(σ2)a+1
e1/bσ2

]

= Inverted Gamma
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [216]

Normal Hierarchical Models -3

• To estimate θ and σ2

Xi ∼ N(θ, σ2), i = 1, . . . , n

θ ∼ N(θ0, τ
2σ2)

σ2 ∼ Inverted Gamma(a, b)

• Use a Gibbs sampler with

θ ∼ N

(

1

1 + nτ 2
θ0 +

nτ 2

1 + nτ 2
x̄,

σ2τ 2

1 + nτ 2

)

1

σ2
∼ Gamma

(

n + 1

2
+ a,

1
∑

i(xi−θ)2

2 + (θ−θ0)2

2 + 1
b

)
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [217]

Example

• Energy Intake (Megajoules) over 24 hours, 15 year old females

91 504 557 609 693 727 764 803
857 929 970 1043 1089 1195 1384 1713
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [218]

Example

• Energy Intake (Megajoules) over 24 hours, 15 year old females

• R program NormalHierarchy-1
Histogram of theta
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [219]

Normal Hierarchical Models -3a

• To avoid specifying θ0 use the hierarchy

Xi ∼ N(θ, σ2), i = 1, . . . , n

θ ∼ Uniform(−∞,∞)

σ2 ∼ Inverted Gamma(a, b)

• which gives a Gibbs sampler with

θ ∼ N
(

x̄, σ2
)

1

σ2
∼ Gamma

(

n

2
+ a,

1
∑

i(xi−θ)2

2 + 1
b

)
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [220]

Example

• Energy Intake (Megajoules) over 24 hours, 15 year old females

• R program NormalHierarchy-2
Histogram of theta
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [221]

Normal Hierarchical Models -4

• A bit more complicated - oneway anova: Yij = µ + αi + εij

• A full hierarchical specification

Yij ∼ N(µ + αi, σ
2), i = 1, . . . , k, j = 1, . . . , ni

µ ∼ Uniform(−∞,∞)

αi ∼ N(0, τ 2), i = 1, . . . , k

σ2 ∼ Inverted Gamma(a1, b1)

τ 2 ∼ Inverted Gamma(a2, b2)
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [222]

Normal Hierarchical Models -4a

• Oneway anova: Yij = µ + αi + εij

• with Gibbs sampler

µ ∼ N

(

ȳ − ᾱ,
σ2

∑

i ni

)

αi ∼ N

(

niσ
2τ 2

σ2 + niτ 2
(ȳi − µ),

σ2τ 2

σ2 + niτ 2

)

1

σ2
∼ Gamma





∑

i ni

2
+ a1,

1
∑

ij(yij−αi−µ)2

2 + 1
b1





1

τ 2
∼ Gamma





k

2
+ a2,

1
∑

i α
2
i

2
+ 1

b2





222



Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [223]

Example

• Energy Intake (Megajoules) over 24 hours, 15 year old females and 15
year old males

• R program NormalHierarchy-3
Histogram of mu
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [224]

Age Distribution of Chinook Salmon - 1

• Chinook salmon spawn in fresh water and the juveniles hatch and swim
out to sea

◦ They return to their natal stream to spawn 3 to 7 years later.

◦ Fish of multiple ages return to the stream

•We want estimates of the age composition

◦ Take scales from a sample of fish and count the annuli.

◦ This is time-consuming and expensive

◦ Use length as a proxy for age - easier and faster to obtain

• Now we will use both length and age.
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [225]

Age Distribution of Chinook Salmon - 2

• Observe (yi, xi), yi = Age, xi = length, where

f(yi, xi|p,µ, σ) ∝
7
∏

j=3

p
I(yi=j)
j

1

σyi

exp

{

−(xi − µyi
)2

2σ2
yi

}

• And we can write the full likelihood as

L(p,µ, σ|y,x) ∝
7
∏

j=3

p
nj

j

1

σ
nj

j

exp

{

−
njs

2
j + nj(x̄j − µj)

2

2σ2
j

}

◦ nj = (#yi = j),
∑

j nj = n

◦ x̄j = 1
nj

∑

i:yi=j xi

◦ s2
j = 1

nj

∑

i:yi=j(xi − x̄j)
2
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [226]

Age Distribution of Chinook Salmon -3

•With no missing yi the likelihood factors

L(p,µ,σ|y,x) ∝





7
∏

j=3

p
nj

j









7
∏

j=3

1

σ
nj

j

exp

{

−
njs

2
j + nj(x̄j − µj)

2

2σ2
j

}





p̂j =
nj
∑

j nj

µ̂j = x̄j

σ̂2
j = s2

j

226



Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [227]

Age Distribution of Chinook Salmon - 4

• A Bayesian Analysis

• Prior specifications

◦ p ∼ Dirichlet(α3, . . . , α7)

◦ µj ∼ Normal(µj0, τ
2
j )

◦ σ2
j ∼ Inverted Gamma(a, b)

• Full conditionals for a Gibbs Sampler

◦ p ∼ Dirichlet(n3 + α3, . . . , n7 + α7)

◦ µj ∼ Normal

(

njτ
2
j

njτ
2
j +σ2

j
x̄j +

σ2
j

njτ
2
j +σ2

j
µj0,

σ2
j τ

2
j

njτ
2
j +σ2

j

)

◦ σ2
j ∼ Inverted Gamma

(

nj

2 + a,
njs

2
j

2 + 1
b

)

• Notice that p only depends on nj.
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [228]

Age Distribution of Chinook Salmon - 5

•With missing yi things are more interesting

◦Write n = nobs + nm = Observed + Missing

◦ y = yobs + ym = Observed + Missing

• Now the likelihood is

L(p,µ,σ|y,x) ∝
7
∏

j=3

p
nj

j

1

σ
nj

j

exp

{

−
njs

2
j + nj(x̄j − µj)

2

2σ2
j

}

×
nm
∏

i=1

7
∏

j=3

(

pj
1

σj
exp

{

−(xi − µj)
2

2σ2
j

})I(ymi=j)

◦ where nj, x̄j, s
2
j are defined for the observed data.
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [229]

Age Distribution of Chinook Salmon - 7

• The Gibbs sampler fills in missing Age data

Ymi ∼ Multinomial

(

pj
1

σj
exp

{

−(xi − µj)
2

2σ2
j

})

• Then updates the parameters

◦ p ∼ Dirichlet(n3 + α3, . . . , n7 + α7)

◦ µj ∼ Normal

(

njτ
2
j

njτ
2
j +σ2

j
x̄j +

σ2
j

njτ
2
j +σ2

j
µj0,

σ2
j τ

2
j

njτ
2
j +σ2

j

)

◦ σ2
j ∼ Inverted Gamma

(

nj

2
+ a,

njs
2
j

2
+ 1

b

)

• where nj, x̄j and s2
j are recalculated for each new Ym.
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [230]

Age Distribution of Chinook Salmon - 8
3
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [231]

A lazy hierarchical specification

Yij ∼ N(µ + αi, σ
2), i = 1, . . . , k, j = 1, . . . , ni

αi ∼ N(0, τ 2), i = 1, . . . , k

• The classical random effects model

•We can set up a Gibbs sampler
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [232]

Random Effects Model

Yij ∼ N(µ + αi, σ
2), i = 1, . . . , k, j = 1, . . . , ni

αi ∼ N(0, τ 2), i = 1, . . . , k

• with Gibbs sampler

αi ∼ N

(

niτ
2

niτ 2 + σ2
(ȳi − µ),

niτ
2σ2

niτ 2 + σ2

)

µ ∼ N

(

ȳ − ᾱ,
σ2

∑

i ni

)

1

σ2
∼ Gamma

(

∑

i ni

2
− 1,

2
∑

ij(yij − µ− αi)2

)

1

τ 2
∼ Gamma

(

k

2
− 1,

2
∑

i α
2
i

)
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [233]

Problem!!

• This is not a Gibbs sampler

• Conditional distributions do not exist!

• Result of using improper priors

◦ Improper priors sometimes OK

◦ Sometimes: bad conditionals

◦ Sometimes: good conditionals, bad posterior ← REAL BAD

◦ Extremely hard to detect

•Moral: Best to use proper priors
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [234]

It’s better to be lucky than good

• Looking for simple example (Am. Statistician 1992)

X|Y = y ∼ ye−yx, Y |X = x ∼ xe−xy
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [235]

It’s better to be lucky than good

• Looking for simple example (Am. Statistician 1992)

X|Y = y ∼ ye−yx, Y |X = x ∼ xe−xy

• This is not a Gibbs sampler

• No joint distribution exists!

• Hammersley-Clifford ⇒

f(x, y) =
e−xy

∫∞
0

1
y dy
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [236]

Hierarchical Models: Animal epidemiology

• Research in animal epidemiology sometimes uses data from groups of
animals, such as litters or herds.

• Such data may not follow some of the usual assumptions of indepen-
dence, etc., and, as a result, variances of parameter estimates tend to
be larger (“overdispersion”)

• Data on the number of cases of clinical mastitis in dairy cattle herds
over a one year period.
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [237]

Hierarchical Models: Animal epidemiology

•Xi ∼ P(λi), where λi is the underlying rate of infection in herd i

• To account for overdispersion, put a gamma prior distribution on the
Poisson parameter. A complete hierarchical specification is

Xi ∼ P(λi),

λi ∼ Ga(α, βi),

βi ∼ Ga(a, b),

where α, a, and b are specified.

• The posterior density of λi, π(λi|x, α), can now be simulated via the
Gibbs sampler

λi ∼ π(λi|x, α, βi) = Ga(xi + α, 1 + βi),

βi ∼ π(βi|x, α, a, b, λi) = Ga(α + a, λi + b) .
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [238]

Animal Epidemiology R code

xdata <-c(0,0,1,1,2,2,2,2,2,2,4,4,4,5,5,5,5,5,5,6,6,8,8,8,9,9,9,

10,10,12,12,13,13,13,13,18,18,19,19,19,19,20,20,22,22,22,23,25)

nx<-length(xdata)

nsim<-1000;

lambda<-array(2,dim=c(nsim,nx));beta<-array(5,dim=c(nsim,nx));

alpha<-.1;a<-1;b<-1;

for(i in 2:nsim){

for(j in 1:nx){

beta[i,j]<-1/rgamma(1,shape=alpha+a,scale=1/(lambda[i-1,j]+(1/b)));

lambda[i,j]<-rgamma(1,shape=xdata[j]+alpha,scale=1/(1+(1/beta[i,j])))

}

}
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [239]

Gibbs sampler output

• Selected estimates of λi and βi.
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [240]

Prediction - Introduction

• For the simple model

X ∼ f(x|θ)

θ ∼ g(θ)

• The predictive density of a new X is

π(xnew|xold) =

∫

f(xnew|θ)π(θ|xold)dθ

◦ π(θ|xold) is the posterior density

◦ Averages over the parameter values

• If θ1, . . . , θM ∼ π(θ|xold)

π(xnew|xold) ≈
1

M

∑

i

f(xnew|θi)
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [241]

Prediction - Introduction -2

• For the hierarchical model

X ∼ f(x|θ)

θ ∼ g(θ|β)

β ∼ h(β|λ)

λ ∼ k(λ)

• the Gibbs sampler give us a (θi, βi, λi), i = 1, . . . ,M

◦ A sample from the joint distribution.

• Using Monte Carlo sums

π(xnew|xold) ≈
1

M

∑

i

f(xnew|θi)

• A Conditionally Independent Hierarchical Model
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [242]

Oneway Anova Predictive Density

• Energy Intake - oneway anova: Yij = µ + αi + εij

• A full hierarchical specification

Yij ∼ N(µ + αi, σ
2), i = 1, . . . , k, j = 1, . . . , ni

µ ∼ Uniform(−∞,∞)

αi ∼ N(0, τ 2), i = 1, . . . , k

σ2 ∼ Inverted Gamma(a1, b1)

τ 2 ∼ Inverted Gamma(a2, b2)

• Predictive Density for Group i

π(ynew|y) =
1

M

M
∑

j=1

1
√

2πσ2
j

e−.5(ynew−µj−αij)
2/σ2

j

where (µj, αij, σ
2
j ) are a sample from the posterior distribution.
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [243]

Energy Intake - Predictive density for females

• R program NormalPrediction-3
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◦ solid = “naive” prediction ◦ dashed = predictive density

243



Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [244]

PKPD Medical Models

• Pharmacokinetics is the modeling of the relationship between the
dosage of a drug and the resulting concentration in the blood.

• Gilks et al. (1993) approach:

◦ Estimate pharmacokinetic parameters using mixed-effects model
and nonlinear structure

◦ Also robust to the outliers common to clinical trials

• For a given dose di administered at time 0 to patient i, the measured
log concentration in the blood at time tij, Xij, is assumed to follow a
normal distribution

Xij ∼ N(log gij(λi), σ
2),
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [245]

PKPD Medical Models

•Xij ∼ N(log gij(λi), σ
2),

• λi = (log Ci, log Vi)
′ are parameters for the ith individual, σ2 is the

measurement error variance, and gij is given by

gij(λi) =
di

Vi
exp

(

−Ci tij
Vi

)

.

◦ Ci represents clearance

◦ Vi represents volume for patient i.

•We complete the hierarchical specification with

log Ci ∼ N (µC, σ2
C) and log Vi ∼ N (µV , σ2

V ).

with µC, σ2
C, µV , σ2

V fixed.
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [246]

PKPD Medical Models

• The posterior density is proportional to

π(Ci, Vi) ∝
∏

i

∏

j

(

exp

{

−xij − log gij

2σ2

})

× exp

{

−log Ci − µC

2σ2
C

}

× exp

{

−log Vi − µV

2σ2
V

}

,

• The full conditional of Ci is

π(Ci) ∝
∏

i

∏

j

exp

{

−xij − log gij

2σ2

}

× exp

{

−log Ci − µC

2σ2
C

}

• Note that to get the full conditional, we “pick off” all terms with Ci.
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [247]

PKPD Medical Models

• The full conditional of Ci is

π(Ci) ∝
∏

i

∏

j

exp

{

−xij − log gij

2σ2

}

× exp

{

−log Ci − µC

2σ2
C

}

•We can write this as

π(Ci) ∝ exp

{

(Ci − ViB/A)2

V 2
i σ2

}

× exp

{

−log Ci − µC

2σ2
C

}

with A =
∑

j t2ij and B =
∑

j tij(Xij + log(di/Vi).

• Sampling from this is a challenge
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [248]

PKPD Medical Models

• The full conditional is

π(Ci) ∝ exp

{

(Ci − ViB/A)2

V 2
i σ2

}

× exp

{

−log Ci − µC

2σ2
C

}

• Some options - use Metropolis

◦ Candidate is
N
(

ViB/A, V 2
i σ2
)

◦ Use Taylor: log Ci = log µC + Ci−µC
µC

to get candidate

N
(

σ2
cµ

2
CViB/A + σ2V 2

i µC

σ2
cµ

2
C + σ2V 2

i

,
σ2

cµ
2
Cσ2V 2

i

σ2
cµ

2
C + σ2V 2

i

)

◦ Vi is even harder
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PKPD Medical Models

• Plan B: Use WinBugs

• Uses Metropolis with Adaptive Rejection Sampling

• But.... Lets start simple with WinBugs
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [250]

Specifying Models with WinBugs

• There are three steps to producing an MCMC model in WinBugs:

◦ Specify the distributional features of the model, and the quantities
to be estimated.

◦ Compile the instructions into the run-time program.

◦ Run the sampler which produces Markov chains.

• Remember that the first step must identify the full distributions for
each variable in the model.
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [251]

WinBugs - Starting Simple

• Normal Hierarchical Model (Conjugate)

X ∼ N(θ, σ2)

θ ∼ N(θ0, τ
2σ2)

σ2 ∼ Inverted Gamma(a, b)

• Here θ0, τ
2, a, b are specified

◦ Each variable must be specified, or have a distribution

◦ NO improper priors allowed
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Monte Carlo Statistical Methods: The Multi-Stage Gibbs Sampler [252]

To Run WinBugs

•Model

◦ Specification Tool: Highlight and Check Model

◦ Data: Highlight and Load Data

◦ Compile

◦ Inits: Highlight and Load

• Inference

◦ Sample Monitor Tool: enter nodes (parameters) stats, trace density

•Model Update Tool
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To Run WinBugs - 2

X ∼ N(θ, σ2)

θ ∼ N(θ0, τ
2σ2)

σ2 ∼ Inverted Gamma(a, b)

model

{ for( i in 1 : N )

{

X[i] ~ dnorm(theta,sigma2)

}

theta ~ dnorm(theta0,v)

v <- tau2*sigma2

sigma2 ~ dgamma(1,1)

theta0 <- 6

tau2 <- 10

}

• WinBugs - Simple.odc
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WinBugs - Another Example

• Logistic Regression

Y ∼ Bernoulli(p(x)), logitp(x) = α0 + α1x1 + α2x2

◦ Y = emergency room use

◦ x1= health category ◦ x2= health care provider

•Model

{

for( i in 1 : N ) {

logit(p[i]) <- alpha0 + alpha1 * metq[i] + alpha2 * np[i]

er[i] ~ dbern(p[i])

}

alpha0 ~ dnorm(0.0,0.1)

alpha1 ~ dnorm(0.0,0.1)

alpha2 ~ dnorm(0.0,0.1)

}

• WinBugs ER.odc
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Return to PKPD Medical Models

•Model

Xij ∼ N(log gij(λi), σ
2)

gij(λi) =
di

Vi
exp

(

−Ci tij
Vi

)

λi = (log Ci, log Vi)
′

log Ci ∼ N (µC, σ2
C), log Vi ∼ N (µV , σ2

V ).
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•Model: WinBugs PKWinBugs.odc

for( i in 1 : N ) {

for( j in 1 : T ) {

X[i , j] ~ dnorm(g[i , j],sigma)

g[i , j] <- (30/V[i]) *exp(-C[i]*t[j]/V[i])}

C[i]<-exp(LC[i]); V[i]<-exp(LV[i])

LC[i] ~ dnorm(mC,sigmaC); LV[i]~ dnorm(mV,sigmaV)}

sigma ~ dgamma(0.01,0.01)

mC ~ dnorm(0.0,1.0E-3)

sigmaC ~ dgamma(0.01,0.01)

mV ~ dnorm(0.0,1.0E-3)

sigmaV ~ dgamma(0.01,0.01)
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PKPD Medical Models

• Alternative Specification:

Xij − log gij(λi)

σ
√

ν/(ν − 2)
∼ Tν.

• This is easy for the Gibbs sampler:

Tν(x|µ, σ2) =

∫

N (x|µ, σ2 ν

w
) Gamma(w|ν

2
,
1

2
) dw

So to generate X ∼ Tν(x|µ, σ2):

X|W ∼ N (x|µ, σ2 ν

W
)

W ∼ Gamma(w|ν
2
,
1

2
)

which fits right in to the Gibbs sampler

• WinBugs PKWinBugs2.odc
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PKPD Models - Prediction

•Model

Xij ∼ N(log gij(λi), σ
2)

gij(λi) =
di

Vi
exp

(

−Ci tij
Vi

)

λi = (log Ci, log Vi)
′

log Ci ∼ N (µC, σ2
C), log Vi ∼ N (µV , σ2

V ).

• Predictive density for individual i at time j is

π(x|x) =

∫ ∫

1√
2πσ2

e
−(x−log(gij(λi))

2

2σ2 π(λi, σ
2|x)dλidσ2

≈ 1

M

M
∑

k=1

1√
2πσ2(k)

e
− [x−log(gij(λ

(k)
i )]2

2σ2(k)

• (λ
(k)
i , σ2(k)), k = 1, . . . , M output from WinBugs
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PKPD Models - Prediction for individual 1

• Average over (λ
(k)
i , σ2(k)) for individual 1
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PKPD Models - Prediction -2

• Predictive density for any individual at time j is

π(x|x) =

∫ ∫

1√
2πσ2

e
−(x−log(gij(λ))2

2σ2 π(λ|x)dλdσ2

≈ 1

nM

n
∑

i=1

M
∑

k=1

1√
2πσ2(k)

e
− [x−log(gij(λ

(k)
i )]2

2σ2(k)

• (λ
(k)
i , σ2(k)), k = 1, . . . , M, i = 1, . . . n output from WinBugs

• Increased variability

◦ Takes into account variation between individuals

◦ Out-of-sample prediction
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PKPD Models - Prediction for new individual

• Average over (λ
(k)
i , σ2(k)) for all individuals
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Age Distribution of Chinook Salmon - Winbugs

• Recall the model

• Sampling Model

◦ Yi ∼ Catagorical(p)

◦Xi ∼ Normal(µyi
, σ2

yi
)

• Prior Specifications

◦ p ∼ Dirichlet(α3, . . . , α7)

◦ µj ∼ Normal(µj0, τ
2
j )

◦ σ2
j ∼ Inverted Gamma(a, b)
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Age Distribution of Chinook Salmon - Winbugs - 2

•Model: WinBugs Chinook.odc

model {

#Priors on Parameters

for(a in 1:A)

{ tau20[a]<-1/sigma20[a]

mu[a]~dnorm(mu0[a],tau20[a])

tau2[a]~dgamma(3,100)

}

pi[1:A]~ddirch(alpha[1:A])

#Sampling Model

for (i in 1:nfish)

{

age[i] ~ dcat(pi[1:A])

length[i] ~ dnorm(mu[age[i]],tau2[age[i]])

}

}
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Age Distribution of Chinook Salmon - Winbugs Estimates
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Age Distribution of Chinook Salmon - R Estimates
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Chapter 12: Diagnosing Convergence
Convergence Criteria

• There are three (increasingly stringent) types of convergence

◦ Convergence to the Stationary Distribution

◦ Convergence of Averages

◦ Convergence to iid Sampling
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Convergence to the Stationary Distribution

•Minimal requirement

• Theoretically, stationarity is only achieved asymptotically

• Not the major issue. Rather,

◦ Speed of exploration of the support of f

◦ Degree of correlation between the θ(t)’s.
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Convergence of Averages

• Convergence of the empirical average

1

T

T
∑

t=1

h(θ(t))→ Ef [h(θ)]

for an arbitrary function h.

•Most relevant in the implementation of MCMC

◦ Convergence related to the mixing speed (Brooks and Roberts)
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Convergence to iid Sampling

• How close a sample (θ
(t)
1 , . . . , θ

(t)
n ) is to being iid.

• Can use subsampling(or batch sampling) to reduce correlation be-
tween the successive points of the Markov chain.
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Multiple Chains

• There are methods involving one chain, and those involving multiple
chains.

• By simulating several chains, variability and dependence on the initial
values are reduced

• Can control convergence to the stationary distribution by comparing
the estimation, using different chains, of quantities of interest.
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Multiple Chains - some cautions

• An initial distribution which is too concentrated around a local mode
of f does not contribute significantly more than a single chain to the
exploration of f

• Slow algorithms, like Gibbs sampling, usually favor single chains

◦ A unique chain with MT observations and a slow rate of mixing
is more likely to get closer to the stationary distribution than M
chains of size T

271



Monte Carlo Statistical Methods: Diagnosing Convergence [272]

Overall Cautions

• It is somewhat of an illusion to think we can control the flow of a
Markov chain and assess its convergence behavior from a few realiza-
tions of this chain.

• The heart of the difficulty is the key problem of statistics, where the
uncertainty due to the observations prohibits categorical conclusions
and final statements.

• But...We do out best!
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Monitoring Convergence of Averages

• Example 12.10: Beta Generator

• The Markov chain (X (t))

X (t+1) =

{

Y ∼ Be(α + 1, 1) with probability x(t)

x(t) otherwise

has stationary distribution

f(x) = αxα−1 ,

◦ Can generate directly

◦ Can also use Metropolis, which accepts y with probability x(t)/y

• Note Ef(X) = α
α+1
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Beta Generator

• This is a very bad chain

• CLT doesn’t hold

•Metropolis and Direct
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Recall Example 1.2 : Normal Mixtures

• For a mixture of two normal distributions,

pN (µ, τ 2) + (1− p)N (θ, σ2) ,

• The likelihood proportional to

n
∏

i=1

[

pτ−1ϕ

(

xi − µ

τ

)

+ (1− p) σ−1 ϕ

(

xi − θ

σ

)]

containing 2n terms.

• Standard maximization techniques often fail to find the global maxi-
mum because of multimodality of the likelihood function.

275



Monte Carlo Statistical Methods: Diagnosing Convergence [276]

Normal Mixture/Gibbs Sampling

• Two components with equal known variance and fixed weights,

pN (µ1, σ
2) + (1− p)N (µ2, σ

2) .

• N (0, cσ2) prior distribution on both means µ1 and µ2

• Latent Variable model assumes

◦ unobserved component indicators zi of the observations xi,

P (Zi = 1) = 1− P (Zi = 2) = p,

and
Xi|Zi = k ∼ N (µk, σ

2) .
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Normal Mixture/Gibbs Sampling-2

• The conditional distributions are

µj ∼ N





(

1

1/c + nj

)

∑

zi=j

xi,

(

σ2

1/c + nj

)



 ,

• z given (µ1, µ2) is a product of binomials, with

P (Zi = 1|xi, µ1, µ2)

=
p exp{−(xi − µ1)

2/2σ2}
p exp{−(xi − µ1)2/2σ2} + (1− p) exp{−(xi − µ2)2/2σ2} .
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Normal Mixture/Gibbs Sampling Example

• Take µ1 = −1, µ2 = 1, and p = .25

• Vary σ = .5, 1, 2

• Start in one mode

◦ R program “NormalMixtureGibbs”
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Normal Mixture, µ1 = −1, µ2 = 1 , σ = 2
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• Appears close to convergence

• Reasonable representation of density
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Normal Mixture, µ1 = −1, µ2 = 1 , σ = 1
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Normal Mixture, µ1 = −1, µ2 = 1 , σ = .5
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Normal Mixture/Gibbs Sampling-Two Dimensions

• In higher dimensions, the Gibbs sampler may not escape the attraction
of the local mode when initialized close to that mode
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Normal Mixture/Gibbs Sampling-5

• This problem is common to single chain monitoring methods

◦ Difficult to detect the existence of other modes

◦ Or of other unexplored regions of the space
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Multiple Estimates

• In most cases, the graph of the raw sequence doesn’t help in the
detection of stationarity or convergence.

• A more helpful indicator is the behavior of the averages in terms of T .

• Can use several convergent estimators of Ef [h(θ)] based on the same
chain

•Monitor until all estimators coincide
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Monitoring Convergence of Averages -Poisson/Gibbs Ex-
ample

• Two Estimators of Lambda

• Empirical Average or the Conditional Expectation

• Convergence Diagnostic → Both estimators converge

0 100 200 300 400 500

0.
90

0.
95

1.
00

1.
05

1.
10

iteration

es
tim

at
e

0 100 200 300 400 500

0.
90

0.
95

1.
00

1.
05

1.
10

iteration

es
tim

at
e

Mean

lam
De

ns
ity

0.9 1.0 1.1 1.2

0
1

2
3

4
5

6
7

285



Monte Carlo Statistical Methods: Diagnosing Convergence [286]

Common Estimates

• The empirical average ST

• The conditional (or Rao–Blackwellized) version of this average

SC
T =

1

T

T
∑

t=1

E[h(θ)|η(t)] ,

• Importance sampling:

SP
T =

T
∑

t=1

wt h(θ(t)) ,

where wt ∝ f(θ(t))/gt(θ
(t)) and gt is the true density used for the

simulation. θ(t).
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Example 12.12: Cauchy Posterior

• The hierarchical model

Xi ∼ Cauchy(θ), i = 1, . . . , 3

θ ∼ N(0, σ2)

has posterior distribution

π(θ|x1, x2, x3) ∝ e−θ2/2σ2
3
∏

i=1

1

(1 + (θ − xi)2)

•We can use a Gibbs sampler

ηi|θ, xi ∼ Exp

(

1 + (θ − xi)
2

2

)

,

θ|x1, x2, x3, η1, η2, η3 ∼ N
(

η1x1 + η2x2 + η3x3

η1 + η2 + η3 + σ−2
,

1

η1 + η2 + η3 + σ−2

)

,
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Example 12.12: Cauchy Posterior -2

• The Gibbs sampler is based on the latent variables ηi, where
∫

e−
1
2ηi(1+(xi−θ)2)dηi =

2

1 + (xi − θ)2

• so

ηi ∼ Exponential

(

1

2
(1 + (xi − θ)2)

)

•Monitor with three estimates of θ

◦ Empirical Average

◦ Rao-Blackwellized

◦ Importance sample
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Monitor with three estimates of θ

• Empirical Average

1

M

M
∑

j=1

θ̂(j)

•Rao-Blackwellized

Eθ = C

∫

θe−θ2/2σ2
3
∏

i=1

1

(1 + (θ − xi)2)
dθ

= C

∫ ∫

θe−θ2/2σ2
e−

1
2

∑

i ηi(1+(θ−xi)
2)dθdη1dη2dη3

And so

θ|η1, η2, η3 ∼ N





∑

i ηixi
1
σ2 +

∑

i ηi

,

[

1

σ2
+
∑

i

ηi

]−1




• Importance sampling with Cauchy candidate
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Cauchy Posterior Convergence
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Multiple estimates

• Empirical Average and RB are similar - supports convergence

• IS poor - not yet converged
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Multiple Estimate-Conclusions

• Limitations:

◦ The method does not always apply

◦ Intrinsically conservative (since the speed of convergence is deter-
mined by the slower estimate)

• Advantage: When applicable, superior diagnostic to single chain
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theta
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With and Between Variances

• Gelman/Rubin Criterion

• Criterion based on the difference between a weighted estimator of the
variance and the variance of estimators from the different chains

• Need good (dispersed) starting values
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With and Between Variances - Some Details

• Generate M chains, estimate ξ = h(θ)

• Calculate

BT = Between Variance

WT = Pooled Within Variance

RT = Adjusted Ratio of BT/WT

• Convergence when RT → 1
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To run Gelman-Rubin in WinBugs

•We need at least two chains in the Model Specification

• Select the B-G-R diag in the Sample Monitor Tool

•Modified by Brooks and Gelman (1998)
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Brooks - Gelman -Rubin

• The plot shows

◦ Green: Widths of pooled central 80% CI for RT

◦ Blue: Widths of average central 80% CI for RT

◦ Red: RT

•Want RT → 1

• Look at some examples

◦ Simple.odc

◦ PKWinBugs.odc
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Gelman/Rubin Comments

•Method has enjoyed wide usage, in particular because of its simplicity
and of its connections with the standard tools

• Gelman and Rubin (1992) suggest removing the first half of the simu-
lated sample to reduce the dependence on the initial distribution

• The accurate construction of the initial distribution can be quite deli-
cate and time-consuming.

• The method relies on normal approximations

• But it’s not bad!
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