Course: STA6934- Monte Carlo Statistical Methods

Instructor: Professor Casella
Assignment 1

Problem 1.1

mix <- function(x, e, ul, u2, sigmal, sigmaZ2)

(exdnorm(x, mean=ul, sd=sigmal)+ (l-e)*dnorm(x, mean=u2, sd=sigmaZ2))
min <- function(x, ul, u2, sigmal, sigmaZ2)

((l-pnorm( (x-ul) /sigmal)) /sigma2+dnorm( (x—u2)/sigma2)

+ (l-pnorm( (x-u2)/sigma2))/sigmal*dnorm( (x-ul/sigmal)))

censplot <- function(e,ul,u2,sigmal, sigmaZ2)

{

lowpoint=pmin (ul,u2)-3*pmax (sigmal, sigmaZ2)

uppoint=pmax (ul,u2)+3*pmax (sigmal, sigmaZ2)

xplot <- seqg(from=lowpoint, to=uppoint, length=1000)

mixxplot <- mix(xplot, e, ul, u2, sigma2, sigmaZ2)

minxplot <- min(xplot, ul, u2, sigmal, sigma2)

plot (xplot, mixxplot, xlim=c(lowpoint, uppoint), ylim=c(0,0.8),
type="1", lty=1, ylab="density", col="blue")

lines (xplot, minxplot, 1lty=2, col="red")

legend (lowpoint, 0.8, c("mixed", "minimum"), lty=c(l,2), col=c("blue",
mtext (bquote (paste ("u=", .(e), ",Normal(", . (ul),",", .(sigmal),"™),
Normal (", . (uz2),",", .(sigma2), ")")))

}

#library (lattice)

#trellis.device (pdf, file="HWlpl", height=20, width=17)
par (mfrow=c (3,2))

censplot(0.3,1,1,1,1)

censplot(0.3,-1,1,1,1)

censplot (0.3,1,1,2,1)

censplot (0.3,-3,1,3,1)

censplot (0.5,3,1,2,1)

censplot (0.5,-3,1,1, 3)

"red") )



Problem 1.4 In order to find an explicit form of the integral
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we use the change of variable y = . We have dy = ax®~'dx and the integral becomes
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Problem 1.7 The density f of the vector Y, is

1\ I (yi—p\ n 2 .
f(y”’“’a)_(a\/%> exp( 22<U >> Vyn € R, V(p,0%) € R x RY

i=1
This function is strictly positive and the first and second order partial derivatives with respect to u and

o exist and are positive. The same hypotheses are satisfied for the log-likelihood function
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log(L(p,0,yn)) = —nlog V2w —nlogo — = Z (y,,u)

thus we can find the ML estimator of 1 and 0. The gradient of the log-likelihood is
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if we equate the gradient to the null vector, V log (L) = 0 and solve the resulting system in x and o, we
find
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Problem 1.13

For X ~ We(«, 3,7), where a > 0 is the shape parameter, 5 > 0 is the scale parameter, and -y is
the translation parameter, the density is given as:
o, —r a—1 _(I,W)a

f(.%‘;()d,ﬁ,’)/)zg( 3 ) € s ) forx >~




For X1, ..., X, are iid as We(«, (3,7), the likelihood function is given as:
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1. v=100, a =3

n=19, in this case
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and we get 3 = 125.6846

Also we could use the nIm function in R to solve this problem. nlm function carries out a min-
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3 +3 " 3(x; — 100)7 - g

imization of the function using a Newton-type algorithm. Thus to find the maximum likelihood
estimator for the parameter is equivalent to get the value minimizing the negative log-likelihood.

The R code and the output is given as below:

>logweibl <- function (beta)
{ alpha=3; size=19;
x <- c(143, 104, 188, 188, 190, 192, 206, 209, 213, 216,
220, 227, 230, 234, 246, 265, 304, 216, 244)
—(sizexlog(alpha)-size*xalphaxlog(beta)+ (alpha-1)*sum(log(x-100))
—sum( ((x-100) /beta) “alpha))

>nlm(logweibl, 100)



Sminimum

[1] 95.13106

Sestimate

[1] 125.6845

As we can see from the above, the two beta values are quite close, hence the fitted model is
Weibull(3,125.6845,100). We will use this method for the following steps.

. v =100, o unknown;

>logweib2 <- function (p)
{ size=19;

x <- c(143, 164, 188, 188, 190, 192, 206, 209, 213, 216,

220, 227, 230, 234, 246, 265, 304, 216, 244)
—(size*xlog(p[l])-size*p[l]l*xlog(p[2])+(p[l]-1)*sum(log(x—-100))
—sum( ((x-100) /p[2]) "p[1]1))

}
>nlm(logweib2, c (3, 125.6845)) # use the result from (a) as the initial =
Sminimum

[1] 94.75059

Sestimate
[1] 3.504232 128.104290

Hence the fitted model is Weibull(3.504232, 128.104290, 100).

. v and « both unknown;

>logweib3 <- function (p)
{ size=19;
x <- c (143, 164, 188, 188, 190, 192, 206, 209, 213, 216,
220, 227, 230, 234, 246, 265, 304, 216, 244)
—(sizexlog(p[l])-sizex pl[l]lxlog(pl[2])+(p[l]-1)+*sum(log(x—-p[3]))



>nlm(logweib3,c(3.504232, 128.104290, 100))
# use the result from (b) as the initial value
Sminimum

[1] 94.59973

Sestimate
[1] 2.849366 105.345531 121.425922

Hence the fitted model is Weibull(2.849366, 105.345531, 121.425922).

Problem 1.22

(a).

(b).

Since L(d, h(#)) > 0 by using Fubini’s theorem, we get

r(m,8) = // L(8, h(0)) £ (x]6)7(0)dzd6

_ // (6, h(0)) f (]0)7(0)d0dzx
_ /X /@ L(5, h(0))m(z)w(6]z)d0dz

— | emdopmia)da,
X

where m is the marginal distribution of X and (7, §|x) is the posterior average cost.

The estimator that minimizes the integrated risk r is therefore, for each x, the one that minmizes

the posterior average cost and it is given by
0" (z) = arg méin o(m, d|z) .
The average posterior loss is given by :

p(m,dlz) = ET[L(S,0)|x]

™ [11h(8) — 61?|]
" [IAO)|Pl] + 62 — 2 < 6, ET [h(0)[2] >

A simple derivation shows that the minimum is attained for

5™ (z) = E™ [1(6)|2] .



(c). Take m to be the posterior median and consider the auxiliary function of 6, s(6), defined as
-1 if h(f) <
5(0) = it h(0) <m
+1 if h(0) >m
Then s satisfies the propriety

E™ [s(0)[z] — —/m ﬂ(@]x)dﬁ—i—/oow(e\x)dﬁ

—00 m

= —P(h(f) < m|z) +P(h(#) >m|z) =0
For § < m, we have L(4,0) — L(m,0) = |h(0) — | — |h(0) — m| from which it follows that
0—m=(m—29)s(0) if 0> h(0)
L(5,0) —L(m,0) =4 m—06=m—29§ if m<d
2h(0) — (0 +m) > (m—10)s(0) if o <h(d) <m
It turns out that L(9,0) — L(m,8) > (m — ¢)s(6) which implies that
E™[L(5,0) — L(m,0)|z] > (m — 0)E" [s(0)|z] = 0.

This still holds, using similar argument when § > m, so the minimum of E™ [L(4, )|z] is reached

atd = m.
Problem 1.23

(2). When X|o ~ N(0, 0?), 2 ~ Ga(1, 2), the posterior distribution is

o

71'(072|X) x f(z|o)r(c™?)
1 _ %242
x —e o2
o
2
= (0’2)%716_(1 £§+2>7

2

which means that 1/02 ~ Ga(3, 2+ %-). The marginal distribution is

_3
m(z) = /f(;cya)w(UQ)d(UZ) x (“’j 4 2) °
thatis, X ~ 7(2,0,2).
(b). When X|\ ~ P(A), A ~ Ga(2, 1), the posterior distribution is
T(A) oc f(z|N)m(N) oc ATTLe™2A

which means that A ~ Ga(z + 2, 2). The marginal distribution is

m(z) = / FaIN)T(A)dA \%‘Ziiﬂl _ \(;’gxi)z .




Problem 1.24

(a). Let the interval [a, b] satisfy fab f(z)de =1 — «aand f(a) = f(b) > 0. Also let z* € [a,b]
be the mode of f(z). We will show that for any interval [a,’] such that ¥’ — a’ < b — q,
f(f,/ f(z)dz < 1 — a, thus proving that [a, b] is the shortest interval. WLOG, assume a’ < a and

split the problem into two cases.

Case 1. Suppose b’ < a. Thenda' <V < a < z and
bl
f@)de < FH)Y —a) < fa)(b—a) / f(@)dz =1 a.
Case 2. Otherwise, assume b’ > a. Then b’ < b and
4 b a v
f(z)dx = / f(x)dx +/ f(z)dx — f(z)dx
a’ a a’ b

Hence we only need to show that [ f(z)dz — fb x)dz < 0. Note thata’ < a <V <,
which implies 7, f(z)dz < f(a)(a — a’) and fb x)dz > f(b)(b—1V'). Hence

a v’
| f@de— [ raaa

| /\

fla)(a—a') — f(b)(b—1')
fla)(a—d —b+1)
f(@)[(t' —d')— (b—a)] <0.

(b). If f is strictly monotone on either side of its mode, which we take to be 0, then f(x) = f(—=z)
for any x € R. If [a, b] is the shortest intercal such that f: f(z)dx =1 — a, then

fla) = f(b) = f(—a) = f(=b) wherea < 0 < b.
Now that f(a) = f(—b) for a, —b < 0 and f is strictly monotone, a = —b must hold.
Problem 1.28

(a). If X ~ G(0, ), then
w(0]a, B) oc w(6) x (Bz)° /T(6)

and a family of functions 7(6) that are similar to the likelihood is given by
m(9) oc £ /T(9)"

where £ > 0 and o > 0 (in fact, o could even be restricted to be an integer). This distribution is

integrable when v > 0 thanks to the Stirling approximation,

L(0) ~ 001270



(b). When X ~ Be(1,6), 6 € N, we have

_ )01 _ )01
flalp) = U = FEEO ST g

and this suggest using a gamma-like distribution on 6,
7(0) x e

where m € N and o > 0. This function is clearly summable, due to the integrability of the

gamma density, and conjugate.



