
Course: STA6934- Monte Carlo Statistical Methods

Instructor: Professor Casella

Assignment 4

Problem 6.22

(a). For every n, the conditional distribution of Xn+1, given xn, xn−1, ..., x0 is the same as the distri-

bution of Xn+1 given xn. Thus (Xn) is a Markov chain.

(b). Let n1, n2 be two states (n1, n2 are two positive integers). We have, if n1 < n2,Kn2−n1(n1, n2) =

pn2−n1 > 0 and Kn2−n1(n2, n1) = (1 − p)n2−n1 > 0, if n1 = n2 = n > 0, K2(n, n) =

2p(1 − p) > 0 and K(0, 0) = 1 − p > 0. We conclude that every pair of states of (Xn) can

be connected in a finite number of steps with positive probability and thus that the chain (Xn) is

irreducible.

(c). Let a = (a1, a2, ...) be a distribution. a is invariant of the chain if, and only if, aP = a, where

P is the transition matrix of (Xn). This is equivalent to (1 − p)(a0 + a1) = a0 and for every

k ≥ 0, pak + (1 − p)ak+2 = ak+1, or, still equivalently, a1 = p
1−pa0 and for every k ≥ 0,

pak + (1− p)ak+2 = ak+1.

The recurrence equation pak + (1− p)ak+2 = ak+1 has the characteristic equation

(1− p)ρ2 − ρ+ p = 0,

which solves into ρ1 = p
1−p and ρ2 = 1. The recurrence solves into

ak = αρk1 + βρk2

Substituting this result into a0 and a1 gives α = a0 and β = 0. Therefore, the invariant distribu-

tion of the chain is

a =

{(
p

1− p

)k
a0

}
k≥0

,

where a0 is arbitrary and ak is the probability that the chain is at state k. To be a probability, a

must satisfy
∞∑
k=0

ak <∞ and
∞∑
k=0

ak = 1,

that is,

a0 =
1− 2p
1− p

, p <
1
2
.
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(d). If
∑
ak <∞ and Xn ∼ a, we have

P (Xn+1 = k) =
∞∑
j=0

P (Xn+1 = k|Xn = j)P (Xn = j)

= P (Xn+1 = k|Xn = k − 1)P (Xn = k − 1)

+ P (Xn+1 = k|Xn = k + 1)P (Xn = k + 1)

= pak−1 + (1− p)ak+1 =

= p

(
p

1− p

)k−1

+ (1− p)
(

p

1− p

)k+1

= ak

Therefore, the invariant distribution is also a stationary distribution of the chain and then the chain

is ergodic.

1 Problem 6.35 ab

a) Given P (X0 = 1) = 1/2, it implies π = (1/2 1/2).

Moreover, since P (Xi+1 = 1|Xi = −1) = 1 and P (Xi+1 = −1|Xi = 1) = 1, it follows that

P =

(
0 1

1 0

)

Let’s consider

πP = (1/2 1/2)

(
0 1

1 0

)
= (1/2 1/2) = π

Thus, the chain is stationary.

b) Notice that P2k = I and P2k+1 = P. Notice that for the case 2k, we observe that X2k = X0

which implies Cov(X0, X2k) = 1 6= 0. Since we just found a subsequence that does not converge to 0,

Cov(X0, Xk) does not go to zero.

Problem 6.40

(a)

By definition of Total Variation Norm, ‖µ‖TV = 1
2

∫
Ω |µ(dx)|. And we use a property,

|µ(dx)| ≥ |h(x)µ(dx)|

Where |h(x)| ≤ 1 for any E. And |µ(dx)| = µ+(dx) + µ−(dx) is total variation measure, and

µ+(dx) = max(µ(dx), 0), µ−(dx) = −min(µ(dx), 0) are signed measures. Then
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1
2

∫
Ω
|µ(dx)| ≥ 1

2

∫
Ω
|h(x)µ(dx)| ≥ 1

2

∣∣∣∣∫
Ω
h(x)µ(dx)

∣∣∣∣
The first inequality is valid by |µ(dx)| ≥ |h(x)µ(dx)|, and the second one is valid by triangle inequality.

Equality satisfies where

‖µ‖TV =
1
2

∫
Ω
|µ(dx)| = 1

2
sup
|h|≤1

∣∣∣∣∫
Ω
h(x)µ(dx)

∣∣∣∣
�

Problem 6.54

Let

P =

(
1− α α

β 1− β

)
be the transition matrix of a two-state ergodic chain. The ergodicity implies that α and β are not null

together, that is that, α+ β > 0. The stationary distribution is

π =
(

β

α+ β
,

α

α+ β

)
,

and then we obtain P̃ = P and P is reversible.

For an ergodic chain with symmetric transition matrix and state space equal to {1, ..., n}, the invari-

ant distribution is

π =
(

1
n
, ...,

1
n

)
,

and so

p̃ij =
πj
πi
pji = pji = pij .

For the given matrix, let π = (0.1, 0.2, 0.4, 0.2, 0.1). An easy computation gives πP = π and hence,

π is the invariant distribution of P. Since, p̃12 = π2
π1
p21 = 0.2

0.10.5 = 1 6= p12 = 0, P is not reversible.

2 Problem 6.67

a) Let’s consider the distribution of X̄ in the multivariate normal case. Notice that V (X̄) > 0 requires

for all sufficiently large n requires ρ > 0. Thus,

X̄ =
1
n
JX ⇒ V (X̄) =

nσ2

n2
+
n− 1
n

ρ→ 0 + ρ > 0

Therefore, we can conclude that X̄ may not be consistent if ρj−i = ρ for all i 6= j.

b) We will now try to show that V (X̄) → 0 if |ρj−i| ≤ Mγj−i with |γ| < 1. For all ε > 0 there

exists a k such that |γ|k+1 < ε. Let’s consider
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| 1
n2

(nσ2 +
∑
i<j

ρij)| ≤
σ2

n
+
M

n2

∑
i<j

|γ|j−i

=
σ2

n
+

2M
n2

[(n− 1)|γ|+ (n− 2)|γ|2 + . . .+ |γ|n−1]

=
σ2

n
+

2M
n2

[(n− 1)|γ|+ (n− 2)|γ|2 + . . .+ (n− k)|γ|k + (n− k − 1)|γ|k−1 + . . .+ |γ|n−1]

≤ σ2

n
+

2M
n2

[(n− 1) + (n− 2) + . . .+ (n− k) + ε ∗ ((n− k − 1) + . . .+ 1)]

=
σ2

n
+

2M
n2

[kn− k(k + 1)
2

+ ε
(n− k − 1)(n− k)

2
]

≤ σ2

n
+

2M
n2

[kn+ ε
(n− k − 1)(n− k)

2
]→n→∞ Mε

The problem follows as ε→ 0.

Problem 7.9

(a). If an Accept–Reject algorithm is used with a wrong bound M , the probability of acceptance of a

given y ∼ g(y) is no longer f(x)/Mg(x) but

min{f(x)/Mg(x), 1} = min{f(x),Mg(x)}/Mg(x) .

Therefore, the distribution of the accepted value is given by

P(X ≤ x) =
∫ x

−∞

∫ min{f(x)/Mg(x),1}

0
g(y) du dy =

∫ x

−∞
min{f(x),Mg(x)}/M dy ,

i.e. its density is

f̃(x) ∝ min{f(x),Mg(x)} .

(b). Since we are generating from f̃ rather than from f , we can correct for this bias by using f̃ as a

proposal and f as a target in an Metropolis–Hastings algorithm. The probability of acceptance of

yt is then

min

{
1,
f(yt)f̃(x(t))
f(x(t))f̃(yt)

}
=



min

{
1,
f(yt)g(x(t))
g(yt)f(x(t))

}
if
f(yt)
g(yt)

> M and
f(x(t))
g(x(t))

> M

Mg(x(t))
f(x(t))

if
f(yt)
g(yt)

< M and
f(x(t))
g(x(t))

> M

1 if
f(yt)
g(yt)

> M and
f(x(t))
g(x(t))

< M

1 otherwise.
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3 Problem 7.30a

Consider X1 ∼ f ⇒ Xt ∼ f∀t.
Moreover, Yt ∼ q(y|xt)⇒ fXt,Yt(x, y) = f(x)q(y|x).

Now, let’s consider

E
f(yt)
q(yt|xt)

h(yt) =
∫

f(yt)
q(yt|xt)

h(yt)f(x, y)dxdy

=
∫ ∫

h(y)f(y)f(x)dxdy =
∫
h(y)f(y)dy = Efh(x)

Problem 7.39

Write

lim
N−→∞

1
N

var

[
N∑
t=1

h(X(t)
1 )

]
− lim

N−→∞

1
N

var

[
N∑
t=1

h(X(t)
2 )

]

=
m∑
i=1

m∑
j=1

hic
1
ijhj −

m∑
i=1

m∑
j=1

hic
2
ijhj

=
m∑
i=1

m∑
j=1

hi(πi(z1
ij − z2

ij) + πj(z1
ji − z2

ji))hj

=
m∑
i=1

m∑
j=1

hiπi(z1
ij − z2

ij)hj +
m∑
i=1

m∑
j=1

hiπj(z1
ji − z2

ji)hi

(Exchanging i and j of the second term,)

= 2
m∑
i=1

m∑
j=1

hiπi(z1
ij − z2

ij)hj = 2hTΠ(Z1 − Z2)h

From exchanging summation index i and j, we know ΠZ is symmetric, hence ΠZ = ZTΠ, and

Π is a diagonal matrix for each diagonal term is Πij = πi. Also, from Kenemy and Snell 1969,

Z = (I− (P− A))−1, where A is from problem 6.10.

From this, we consider hTΠZh. If we take derivative w.r.t Pkl, where (k 6= l), and if it is negative, then

it proves 2hTΠ(Z1 − Z2)h ≥ 0. We write,
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∂hTΠZh
∂Pkl

= hTΠ
∂Z
∂Pkl

h

From
(
∂Z
∂Pkl

= −Z
∂Z−1

∂Pkl
Z
)

,

= −hTΠZ
∂(I− P + A)

∂Pkl
Zh

= −hTΠZ
∂(−P)
∂Pkl

Zh

= −(Zh)TΠ
∂(−P)
∂Pkl

Zh

Let −Π ∂(P)
∂Pkl

= Q. Then by theorem 6.46, P is reversible, so that we can remove dependencies in the

transition matrix with Pkl, by setting Pkk = 1 −
∑m

j=1,j 6=k Pkj , and by reversibility, Plk = πk
πl
Pkl.

Then Q has all zeros except following elements with the values, Q(k,k) = πk, Q(k,l) = −πk, Q(l,k) =

−πk, Q(l,l) = πk. Finally, we check whether Q is positive definite, by calculating xTQx, since it is

πk(xk − xl)2 ≥ 0, hence true. Therefore,

∂ limN−→∞
1
N var

[∑N
t=1 h(X(t))

]
∂Pkl

=
∂hTΠZh
∂Pkl

= −(Zh)TΠ
∂(−P)
∂Pkl

Zh ≤ 0

This result implies that limN−→∞
1
N var

[∑N
t=1 h(X(t))

]
is decreasing function of Pkl, hence if P1 ≤

P2, then

lim
N−→∞

1
N

var

[
N∑
t=1

h(X(t)
1 )

]
− lim
N−→∞

1
N

var

[
N∑
t=1

h(X(t)
2 )

]
≥ 0�

Problem 7.44

(a)

To show

L(β, φ,D|y) =
∫ n∏

i=1

f(yi|b, βi, φ)fb(b|D)db

, where b is unobserved, and y is observed. By the link function h(ξi) = x′iβi + z′ib, y depends on b

through D. Therefore,
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L(β, φ,D|y) =
∫
f(y,b|β, φ,D)db

=
∫
f(y, |β, φ)f(b|D)db

=
∫ n∏

i=1

f(yi|b, βi, φ)fb(b|D)db�

(b)

Lw = L(β, φ,D|y,b) =
n∏
i=1

f(yi|b, βi, φ)fb(b|D)

logLw =
n∑
i=1

log f(yi|b, βi, φ) + log fb(b|D)�

(c)

At each step, EM algorithm maximizes:

Eθ̂(m)
(logL(β, φ,D|y,b))

,where θ̂(m) = {β̂(m), φ̂(m), D̂(m)}, and by theorem 5.16 and 5.17, limm→∞ θ̂(m) = θ̂MLE
(m) . Then,

Eθ̂(m)
(
n∑
i=1

log f(yi|b, βi, φ) + log fb(b|D)) =
n∑
i=1

Eθ̂(m)
(log f(yi|b, βi, φ)) + Eθ̂(m)

(log fb(b|D))

Since independent variables in the first(β, φ), and the second(D) terms do not depend on each other,

hence we can maximize them separately, then they are the step 2 and 3 in the given algorithm, hence

proved.
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