Course: STA6934- Monte Carlo Statistical Methods

Instructor: Professor Casella

Assignment 4

Problem 6.22

(a).

(b).

(c).

For every n, the conditional distribution of X,, 41, given z,, Zn—1, ..., Tg is the same as the distri-

bution of X, given x,,. Thus (X,,) is a Markov chain.

Let ny, ng be two states (ny, ng are two positive integers). We have, if ny < no, K"27 ™ (ny,ng) =
p2™ > 0and K™ ™ (ng,ny) = (1 —p)2™™ > 0,if ng = ng = n > 0, K?(n,n) =
2p(1 —p) > 0and K(0,0) = 1 —p > 0. We conclude that every pair of states of (X,,) can
be connected in a finite number of steps with positive probability and thus that the chain (X,) is

irreducible.

Let a = (a1, ag, ...) be a distribution. « is invariant of the chain if, and only if, aP = a, where
PP is the transition matrix of (X,,). This is equivalent to (1 — p)(ag + a1) = ag and for every
k > 0, pax + (1 — p)agsa = ag41, or, still equivalently, a; = %ao and for every k > 0,
pag + (1 — p)ari2 = agy1.

The recurrence equation pay + (1 — p)agyo = ap41 has the characteristic equation
(1=p)p* —p+p=0,
which solves into p; = % and ps = 1. The recurrence solves into
ay = ap} + Bph

Substituting this result into ag and a1 gives @ = ag and 8 = 0. Therefore, the invariant distribu-

{(25) )

tion of the chain is

where ag is arbitrary and ay, is the probability that the chain is at state k. To be a probability, a

must satisfy

o0 (0.0
Zak<oo and Z@kzl,
k=0 k=0
that is,
ag = 1= 2p, < 1
I-p



(d). If Y~ ag < oo and X, ~ a, we have

P(Xpp1=k) = > P(Xnp1 =KX, =j)P(X, =)
§=0
= PXpp=kX,=k—-1P(X,=k—1)

+ P(Xpy1 = kX, =k+1)P(X, =k+1)

= pag—1+ (1 —plagy =

(85) (i)

Therefore, the invariant distribution is also a stationary distribution of the chain and then the chain

is ergodic.

1 Problem 6.35 ab

a) Given P(Xp = 1) = 1/2, itimplies 7 = (1/2 1/2).
Moreover, since P(X;y; = 1|X; = —1) = 1 and P(X;41 = —1|X; = 1) = 1, it follows that

=1

7P =(1/2 1/2) (2 (1)) = (1/2 1/2) =7

Let’s consider

Thus, the chain is stationary.
b) Notice that P?* = I and P?**! = P. Notice that for the case 2k, we observe that Xor = X
which implies C'ov(Xg, Xox) = 1 # 0. Since we just found a subsequence that does not converge to 0,

Cov(Xg, X}) does not go to zero.

Problem 6.40

(a)

By definition of Total Variation Norm, ||p||7v = & [, [(dz)|. And we use a property,

u(dz)| = |h(z)p(dr)]

Where |h(z)] < 1 for any E. And |u(dz)| = p*(dz) + p~(dz) is total variation measure, and
pt(dz) = max(u(dz),0), p~ (dx) = — min(u(dzx), 0) are signed measures. Then



/|,udw|> /|h wu(dz)| > = /h

The first inequality is valid by |u(dz)| > |h(x)u(dx)|, and the second one is valid by triangle inequality.

| hautaa)

Equality satisfies where

1 1
ke =5 [ ludz)| = 5 sup
Q |h|<1

O

Problem 6.54
Let
l—« «
P—=
( goo1- ﬂ)

be the transition matrix of a two-state ergodic chain. The ergodicity implies that « and 3 are not null
together, that is that, « + 8 > 0. The stationary distribution is

N
= a+p a+p)’

and then we obtain P = IP and P is reversible.

For an ergodic chain with symmetric transition matrix and state space equal to {1, ..., n}, the invari-

(w3)
T=|—ee,— |,
n n

- v
bij = —Pji = Pji = Dij-
T

ant distribution is
and so

For the given matrix, let 7 = (0.1,0.2,0.4,0.2,0.1). An easy computation gives 7I> = 7 and hence,

m is the invariant distribution of IP. Since, p1o = %pm = %0.5 =1 # p12 = 0, P is not reversible.

2 Problem 6.67

a) Let’s consider the distribution of X in the multivariate normal case. Notice that V (X) > 0 requires

for all sufficiently large n requires p > 0. Thus,

no? n—1

_ 1 _
X=-"JX=VX)=—
- (X) 3

p—0+p>0

Therefore, we can conclude that X may not be consistent if pj—i = pforall i # j.
b) We will now try to show that V(X) — 0if |pj—;| < M~7~" with |y| < 1. For all ¢ > 0 there

exists a k such that |y|**! < e. Let’s consider
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The problem follows as € — 0.

Problem 7.9

| =n—oo Me

(a). If an Accept—Reject algorithm is used with a wrong bound M, the probability of acceptance of a

given y ~ g(y) is no longer f(xz)/Mg(z) but

ming f()/Mg(x), 1} = min{f(z), Mg

Therefore, the distribution of the accepted value is given by

(z)}/Mg(z).

T min{ f(z)/Mg(x),1} T
<o-[ | o) dudy = [ min{ (o). My(a)}/M dy.

i.e. its density is

f(@) oc min{f (x), Mg(x)} .

(b). Since we are generating from f rather than from f, we can correct for this bias by using f asa

proposal and f as a target in an Metropolis—Hastings algorithm. The probability of acceptance of

1 1s then

i d g fg)

( )g(yt)f(x(t))
oot Mg(x ! )
min {1, f(yt)f(f( )) f(a®)
(=®) f (ye)
1
1

f(y) fz®)
(yt)>M and (m(t)) > M
(1) f ()
((%% < M and (( ((2% > M
Yt z
o > M <
otherwise.

+ [y["



3 Problem 7.30a

Consider X1 ~ f = X; ~ fVi.

Moreover, Y; ~ q(y|zt) = fx, v (z,y) = f(z)q(y|z).
Now, let’s consider

f(y) f(y)
B g = [ ot Sh(n)f (e y)dudy
- //h dmdy—/h(y)f(y)dy:th(;g)
Problem 7.39

Write

i Lvar S h(x i Lvar | S ()
im var Z Xy - m var tz:; (X37)
= i in: hicr}jhj — i i hic?jhj

i=1 j=1 i=1 j=1
m m
= Z Z hi(mi(zi; — 25) + mj(25; — 25))hy
i=1 j=1
m m m m
SDY) WETEIE RS ) SIS WY
i=1 j=1 i=1 j=1
(Exchanging i and j of the second term,)
= 22 Zh miz 2)hj =2 1I(Z" — Z*)h
=1 j=1

From exchanging summation index i and j, we know IIZ is symmetric, hence I1Z = Z"II, and
IT is a diagonal matrix for each diagonal term is 1I;; = ;. Also, from Kenemy and Snell 1969,
Z = (I — (P — A))~!, where A is from problem 6.10.
From this, we consider h” TIZh. If we take derivative w.r.t Py;, where (k # 1), and if it is negative, then
it proves 2h”TI(Z' — Z%)h > 0. We write,



oh™TIZh
— 7 = n'n=Ztn
0Py 0Py
OZ oz~1!
F — = —-Z—7
rom <8Pkl 0Py > ’
A —P+A)
0Py

= —hTHZQthZh

Zh

Let —Hg(TEi)l = Q. Then by theorem 6.46, PP is reversible, so that we can remove dependencies in the
transition matrix with Py, by setting Py, = 1 — E;”Zl otk Py, and by reversibility, Py, = %Pkl.
Then Q has all zeros except following elements with the values, Q(x xy = Tk, Qi) = —7k, Q) =
—7k, Q) = 7k Finally, we check whether Q is positive definite, by calculating xT'Qx, since it is
7k (zp — 27)? > 0, hence true. Therefore,
. N
8th_,oo %Var [ =1 h(X(t))] _ 8hTHZh -

o(-P)
— - _ T2 __J7nh <
9P 9Py (Zh) II 9Py Zh <0

This result implies that limy . %Var [ i\; 1 h(X (t))} is decreasing function of Py, hence if P; <
P5, then

N—0 N—0

N N
i (1) _— (1)
lim v [; h(X; )] — lim NV [; h(X57)| > 0g

Problem 7.44

(a)
To show
L(8.6.Dly) = [ 1] fulb.5::6)n(bID)ab
=1

, where b is unobserved, and y is observed. By the link function h(§;) = x}5; + z.b, y depends on b
through D. Therefore,



L(8,6.Dly) = / f(v, b8, 6, D)db
- / £(y.18.)(b|D)db

— [ TL 7M. 5. )fo(biD)ibe
=1

(b)
Ly, = L(B,¢,Dly,b) =[] f(wilb, 8, ) fu(b| D)
=1
log Ly = Y log f(yilb, i, ¢) + log fu(b| D)o
i=1
(c)

At each step, EM algorithm maximizes:

By, (08 L(8,6, Dly, b))

,where é(m) ={Bm): d;(m), D(m)}, and by theorem 5.16 and 5.17, lim,;,— oo é( )= H?gﬁE Then,

B Zlogf yilb, B, 6) +log fo(b| D)) ZE (log f(yilb. i, ) + By, (log fu(b| D))

Since independent variables in the first(3, ¢), and the second(D) terms do not depend on each other,
hence we can maximize them separately, then they are the step 2 and 3 in the given algorithm, hence

proved.



