
Course: STA6934- Monte Carlo Statistical Methods

Instructor: Professor Casella

Assignment 5

Problem 8.4

Algorithm: We can find that the integrating factor is
∫∞

0 exp(−xd)dx. We can transform xd = y, then

we can find
∫∞

0 exp(−xd)dx = 1
dΓ(1

d), hence f(x) = d exp(−xd)

Γ( 1
d

)
. Also, to use in algorithm, we

find f(x) > u, which results x <
[
− log

(
Γ(1/d)
d u

)]1/d
.

• Set starting point (x, u) in
{

(x, u) : 0 < u < d exp(−xd)

Γ( 1
d

)

}
.

• At iteration t, simulate

1. u(t+1) ∼ U
(

0, d exp(−xd)

Γ( 1
d

)

)
2. x(t+1) ∼ U

(
0,
[
− log

(
Γ(1/d)
d u

)]1/d
)

Simulation: For (1000, 10000, 100000) simulations for each d = {0.1, 0.25, 0.4}. For each graph, a

histogram is the simulation results, and a solid line is f(x) = d exp(−xd)

Γ( 1
d

)
. We can check that the d

is larger, then histogram is more filling under the area of f(x).

Problem 8.5

Here is the data,

Quartile 0.00000 0.67000 0.84000 1.28000 1.64000 1.96000 2.33000

Probability 0.50000 0.74857 0.79955 0.89973 0.94950 0.97500 0.99010
Slice 0.50099 0.74953 0.80054 0.90061 0.95050 0.97584 0.99034

IID Sampler 0.49887 0.74929 0.80049 0.90141 0.95139 0.97539 0.99011

The first row shows quantiles, and the second row represents corresponding probabilities. The third

rows shows the empirical probabilities of corresponding quantiles derived by slice sampler, and the forth

represent IID sampler in R system, for 100,000 sample size for both. Both sampler gives similar results,

however, slice sampler takes 5.77 seconds, but IID sampler takes only 0.32 second.
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Problem 9.2

Let (x0, y0) be the starting point, and that suppose we actually use only x0. From standard properties of

the conditional distribution of the bivariate normal, we have

Y0 ∼ N(ρx0, 1− ρ2)

Now, conditional on Y0,

X1 ∼ N(ρY0, 1− ρ2)

Thus hives us the GS. Combining these two facts, we see that unconditionally,

X1 ∼ N(ρ2x0, (1− ρ2) + ρ2(1− ρ2)) = N(ρ2x0, 1− ρ4)

Iterating this kind of calculation, we see that unconditionally,

Xn ∼ N(ρ2nx0, 1− ρ4n)

R-code:

nsim <- 50000

X <- array(0, dim=c(nsim,1))

Y <- array(0, dim=c(nsim,1))

Z <- array(0, dim=c(nsim,1))

rho=0.3

Y[1]=runif(1,0,1)

X[1]=runif(1,0,1)*sqrt(1-rhoˆ2)+rho*Y[1]

Z[1]= (X[1])ˆ2+{Y[1]}ˆ2

for (i in 2:nsim) {

X[i]= runif(1,0,1)*sqrt(1-rhoˆ2)+rho*Y[i-1]

Y[i]= runif(1,0,1)*sqrt(1-rhoˆ2)+rho*X[i]

Z[i]= (X[i])ˆ2+{Y[i]}ˆ2 }

sum((Z>2))/nsim

[1] 0.10266
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Problem 9.4

We have two ergodic Markov chains {X(i), Y (i)}, and corresponding Metropolis-Hastings Algorithm

and Gibbs Sampler as following,

• MH Algorithm

1. Generate x′ ∼ g(x′|x)

2. Take

x′new =

x′, with probability ρ(x, x′)

x, otherwise.

Where

ρ(x, x′) = min
{
f(x′)
f(x)

g(x|x′)
g(x′|x)

, 1
}

• Gibbs Sampler, beginning with X0 = x0,

1. Take Yt ∼ fY |X(·|xt−1)

2. Take Xt ∼ fX|Y (·|yt)

(a)

Showing K(x, x′) = g(x′|x) =
∫
f(x′|y)f(y|x)dy, the first part K(x, x′) = g(x′|x) is just matching

this and the first step of MH algorithm above. And proving second part is following,

K(x, x′) = f(x′|x) =
f(x′, x)
f(x)

=
1

f(x)

∫
f(x′, x|y)f(y)dy

=
∫
f(x′|y)

f(x|y)
f(x)

f(y)dy (by the interleaving property,)

=
∫
f(x′|y)

f(x, y)
f(x)

dy

=
∫
f(x′|y)f(y|x)dy�
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(b)

The MH algorithm with % generates x ∼ f , where f(·) =
∫
f(·, y)dy. What we show is that this

marginal distribution is the stationary distribution of X(i), which is following.∫
f(x)g(x′|x)dx =

∫
f(x)

∫
f(x′|y)f(y|x)dydx

=
∫∫

f(x′|y)f(y|x)f(x)dxdy

=
∫
f(x′|y)f(y)dy

= f(x′)

Hence f(x) is also the stationary distribution, from which we desire to generate x.

(c)

From (b), we know that f(x) is stationary distribution of kernel density g(x′|x), hence it satisfies de-

tailed balance condition,

g(x′|x)f(x) = g(x|x′)f(x′)

And we rearrange it,
f(x′)
g(x′|x)

=
f(x)
g(x|x′)

Therefore % = 1, and we always accept new x′ in MH algorithm.

Problem 9.8

(a)

From Example 9.7, we know the conditional posterior density of a and b, given each other,

π(a|y, t, b) ∝ exp

(
a
∑
i

yi − ea
∑
i

ebti − a2

2σ2

)

π(b|y, t, a) ∝ exp

(
b
∑
i

tiyi − ea
∑
i

ebti − b2

2τ2

)
where observation, (Yi) given number of passages, (ti) follows P(exp(a + bti)), and priors are a ∼
N (0, σ2), b ∼ N (0, τ2), with known variances.
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Algorithm: Since we know π(a|y, t, b) and π(b|y, t, a), we can use Gibbs sampler, however the nor-

malizing constants of them are problematic. In this case, in generating each of the conditional, we

can use random walk Metropolis-Hastings algorithm, in which we can ignore normalizing con-

stants. Also the candidates are g(at|at−1) = N (at−1, σ
2) and g(bt|bt−1) = N (bt−1, τ

2), where

we can cancel candidate density terms in ρ. The algorithm is, beginning with a0 ∼ N (0, σ2),

1. Generate bt ∼ π(bt|y, t, at−1)

(a) Generate b′ ∼ N (bt−1, τ
2) = g(b′|bt−1)

(b) Take

bt =

b′, with probability ρ(bt−1, b
′)

bt−1, otherwise.

Where

ρ(bt−1, b
′) = min

{
π(b′|y, t, at−1)
π(bt−1|y, t, at−1)

, 1
}

2. Generate at ∼ π(at|y, t, bt)

(a) Generate a′ ∼ N (at−1, σ
2) = g(a′|at−1)

(b) Take

at =

a′, with probability ρ(at−1, a
′)

at−1, otherwise.

Where

ρ(at−1, a
′) = min

{
π(a′|y, t, bt)
π(at−1|y, t, bt)

, 1
}

(b)

Algorithm: Now, we have a full specification that the last number of passages, t4 is not 4, but “4 or

more” with observations y4 = 13. In this case we need to generate t4 as well as {a, b}, So we

have three-stage Gibbs sampler, with posterior for t4 as

π(t4,t|y4, at, bt) ∝ exp[− exp(a+ bt4) + y4(a+ bt4)]

However, since we cannot ascertain
∑∞

t4=4 π(t4,t|y4, at, bt) < ∞, we generate a candidate x ∼
Truncated Poisson(µ) = g(x|µ), x ≥ 4 and we can generate t4 through subsequent independent

MH algorithm. In this way we can avoid calculating normalizing constant of π(t4,t|y4, at, bt). For

the first two stages, we use previous t4, so that we can use the same posteriors π(a|y, t, b), π(b|y, t, a)
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as in (a). The algorithm is following.

1. Generate bt ∼ π(bt|y, t, at−1)

(a) Generate b′ ∼ N (bt−1, τ
2) = g(b′|bt−1)

(b) Take

bt =

b′, with probability ρ(bt−1, b
′)

bt−1, otherwise.

Where

ρ(bt−1, b
′) = min

{
π(b′|y, t, at−1)
π(bt−1|y, t, at−1)

, 1
}

2. Generate at ∼ π(at|y, t, bt)

(a) Generate a′ ∼ N (at−1, σ
2) = g(a′|at−1)

(b) Take

at =

a′, with probability ρ(at−1, a
′)

at−1, otherwise.

Where

ρ(at−1, a
′) = min

{
π(a′|y, t, bt)
π(at−1|y, t, bt)

, 1
}

3. Generate t4,t ∼ π(t4,t|y4, at, bt)

(a) Generate x′ ∼ Truncated P(µ) = g(x′|µ), x′ ≥ 4

(b) Take

t4,t =

x′, with probability ρ(t4,t−1, x
′)

t4,t−1, otherwise.

Where

ρ(t4,t−1, x
′) = min

{
π(x′|y4, at, bt)g(t4,t−1|µ)
π(t4,t−1|y4, at, bt)g(x′|µ)

, 1
}
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Problem 9.14

(a)

The distribution of the missing data is Zi ∼ Φ(z−θ)
1−Φ(a−θ) and the complete data likelihood is

L(θ|x, z) = Πm
i=1e

−(xi−θ)2/2
[
Πn
i=m+1e

−(zi−θ)2/2
]

(2π)−n/2(1−Π(a− θ))n−m

∝ exp{−1
2

m∑
i=1

(xi − θ)2 − 1
2

n∑
i=m+1

(zi − θ)2}

∝ exp{1
2

[nθ2 − 2θ(x̄+ (n−m)z̄) + (mx̄2 + (n−m)z̄2)]}

∝ exp{−n
2

[θ − mx̄+ (n+m)z̄
n

]2 +
1
2

[
(mx̄+ (n−m)z̄)2

n
−mx̄2 + (n−m)z̄2]}

∝ exp{−n
2

[θ − mx̄+ (n+m)z̄
n

]2

Thus, as a function of θ, the normalized complete data likelihood is N(mx̄+(n+m)z̄
n , 1

n).

Problem 9.17

(1)

We assume Xi1 and Xi2 are conditionally independent given {θ1, θ2}. Then,

L(θ1, θ2|Yi, ni1, ni2) = L(θ1, θ2|Yi = Xi1 +Xi2, ni1, ni2)

=
Yi∑
ji=0

L(θ1, θ2|Xi1 = ji, Xi2 = Yi − ji, ni1, ni2)

=
Yi∑
ji=0

L(θ1|Xi1 = ji, ni1)L(θ2|Xi2 = Yi − ji, ni2)

Since Xi1 ∼ B(ni1, θ1), and Xi2 ∼ B(ni2, θ2), we have,

L(θ1, θ2|Y,n1,n2) =
3∏
i=1

 Yi∑
ji=0

(
ni1
ji

)(
ni2

Yi − ji

)
θji1 (1− θ1)ni1−jiθYi−ji

2 (1− θ1)ni2−Yi+ji


�
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Problem 9.26

(a)

We want to derive π(µ, τ |x) where x = {x1, x2, · · ·xn}, with prior of τ2
j ∼ IG(ν,A),

π(τj |ν,A) =
Aν

Γ(ν)
(τ2
i )−(ν+1) exp

(
− A
τ2
j

)
independent with known ν and π(A) ∝ 1

A . For the prior of µj ,

π(µj |µj−1, τ ) = N+
µj−1

(µj−1, B(τ−2
j + τ−2

j−1)−1)

WhereN+
a (µ, σ2) is a density of truncated normal greater than a, except π(µ1) = I−∞<µ1<∞, improper

uniform. Then the prior of µ,

π(µ|τ ) ∝
k∏
j=2

(τ−2
j + τ−2

j−1)1/2 exp

−B
2

k∑
j=2

(µj − µj−1)2(τ−2
j + τ−2

j−1)

 Iµ1<µ2<···<µk
(∗)

Where Tj =

τ
−2
j + τ−2

j−1, j > 1

1, j = 1
, aj =

B(µj − µj−1)2, j > 1

0, j = 1
, and bj =

aj+1, j < k

0, j = k
, then

the prior of τ

π(τ |ν,A) ∝ Akν−1

 k∏
j=1

τ2
j

−(ν+1)

exp

−A k∑
j=1

τ−2
j

 , (∗∗)

Assuming B, ν known, and π(A) ∝ A−1.

For the sample distribution, normal mixture, we introduce latent variables zi ∼ Mk(1|p1, p2, · · · , pk),

and for the prior of p is π(p|γ) ∝
∏k
j=1 p

γj−1
j , assuming all γj , 1 ≤ j ≤ k are known. Therefore the

likelihood function is,

L(µ, τ ,p|x, z) ∝
k∏
j=1

p
nj+γj−1
j τ

−nj

j exp

[
− 1

2τ2
j

[nj(x̄j − µj)2 + (nj − 1)s2
j ]

]
(∗ ∗ ∗)

by square completion, where x̄j =
∑k

j=1 xiIzi=j , and s2
j =

∑k
j=1(xi− x̄j)2Izi=j . Finally the posterior

distribution π(µ, τ ,p, A|x, z) that is derived by multiplying (∗) · (∗∗) · (∗ ∗ ∗) and reorganizing, is

proportional to

Akν−1
k∏
j=1

T1/2
j

p
nj+γj−1
j

(τ2
j )ν+nj/2+1

exp

− 1
2τ2
j

k∑
j=1

(2A+ aj + bj + nj(x̄j − µj)2 + (nj − 1)s2
j )

 Iµ1<µ2<···<µk
�
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(b)

Since π(p|x, z) ∝
∏k
j=1 p

nj+γj−1
j is independent to µ, τ , A, we consider posterior of µ, τ , A only. We

use two identities,∫ ∞
−∞

exp
[
− 1
τ2

(C1(µ− a)2 + C2(µ− b)2)
]
dµ =

√
2πτ√

C1 + C2
exp

{
−C1C2(a− b)2

τ2(C1 + C2)

}
∫ ∞

0
A−a−1 exp

(
− C3

2A2

)
dA =

2a/2−1Γ(a/2)

C
a/2
3

And we consider a case k = 2, n1 = 2, n2 = 0, the full proof can be done by induction. Then,

f(µ, τ , A|x, z) ∝ A2ν−1(τ2
1 )−(ν+2) exp

[
− 1

2τ2
1

(2A+B(µ2 − µ1)2 + 2(x̄1 − µ1)2 + s2
1)
]

· (τ−2
2 + τ−2

1 )1/2(τ2
2 )−(ν+1) exp

[
− 1

2τ2
2

(2A+B(µ2 − µ1)2)
]

Iµ1<µ2

From the above posterior, we can extract posterior for µ1, µ2,

f(µ1, µ2|x, z) = exp
[
−1

2
B(τ−2

2 + τ−2
1 )(µ2 − µ1)2 + 2(x̄1 − µ1)2

]
Iµ1<µ2

We have upper bound of
∫∞
−∞

∫ µ2

−∞ f(µ1, µ2|x, z)dµ1dµ2 when we integrate over −∞ < µ1, µ2 < ∞,

by using the first identity,∫ ∞
−∞

∫ µ2

−∞
f(µ1, µ2|x, z)dµ1dµ2 ≤

∫ ∞
−∞

∫ ∞
−∞

f(µ1, µ2|x, z)dµ1dµ2

=
∫ ∞
−∞

√
2π

B(τ−2
2 + τ−2

1 ) + 2
exp

[
−B(τ−2

2 + τ−2
1 )(x̄1 − µ2)2

B(τ−2
2 + τ−2

1 ) + 2

]
dµ2

=
√
π

B

τ2
1 τ

2
2√

(τ2
2 + τ2

1 )
=

Cτ2
1 τ

2
2√

(τ2
2 + τ2

1 )

Where C =
√

π
B . Then we plug-in the above to find,

f(A, τ |x, z) ≤ CA2ν−1(τ2
1 )−(ν+5/2)(τ2

2 )−(ν+3/2) exp
[
− 1

2τ2
1

(2A+ s2
1)− A

τ2
2

]
.

We integrate over f(A, τ |x, z) over τ1, τ2, referring the second identities. Then we have,

f(A|x, z) =
∫ ∞

0

∫ ∞
0

f(A, τ |x, z)dτ1dτ2

≤ C
22ν+1Γ(ν + 2)Γ(ν + 1)A2ν−1

(2A+ s2
1)ν+2(2A)ν+1

= C ′
Aν−2

(A+ s2
1/2)ν+2
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Where C ′ = C Γ(ν+2)Γ(ν+1)
4 . Finally, we get total posterior upper bound by integrating f(A|x, z) over

A (referring a known identity),∫ ∞
0

f(A|x, z)dA =
∫ ∞

0
C ′

Aν−2

(A+ s2
1/2)ν+2

dA

= C ′′
(

2
s2

1

)3

<∞

Where C ′′ = C ′Γ(ν − 1)Γ(3). Since the upper bound is finite, the posterior is proper.
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