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ABSTRACT

Since the introduction of Akaike’s information criteria (AIC) in 1973, many informa-

tion criteria have been developed and widely used in model selection. Many papers

concerning the justification of criteria followed, particularly with respect to model

selection error rates (the probability of selecting a wrong model). A model selection

criterion is called consistent if the model selection error rate decreases to zero as the

sample size increases to infinity. Otherwise, it is inconsistent. In this paper, we ex-

plore the consistency conditions of information criteria in nonparametric (logspline)

vs. parametric model comparisons, and discuss model selection error rates when the

sample size is finite.
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1 INTRODUCTION

In past decades, there were many papers that addressed the consistency of model se-

lection criteria in various settings; see Haughton (1988, 1994), Nishii(1984), Potscher

(1989) and Shibata (1976, 1981) and the references contained therein. The “classi-

cal” results for finite dimensional models show that leave-nv-out cross validation (Shao

1993), BIC (Schwarz 1978) and Bayes factor (Gelfand and Dey 1994) are consistent,

while AIC (Akaike 1973), Cp(Mallow 1973), jackknife, bootstrap (Efron 1983) and

leave-one-out cross validation are asymptotically equivalent and inconsistent (Shao

1993). All of these articles, except Shibata (1981), assume that the number of avail-

able models (or parameters) is finite. However, in many cases, the analyst wants to

include more parameters in the model as the sample size increases, assuming the true

model is in an infinite parameter space. The logspline model is one of the largest

nonparametric model families in this category (Stone 1990, 1991 and Kooperberg

and Stone 1991). Our interest is to examine error rates of model selection criteria in

nonparametric logspline model vs. parametric model comparisons.

Let yi be the random variable of interest for the ith observation and ψMk be the pa-

rameter in the logspline model Mk (Stone 1990). One version of the logspline model

Mk refers to a model with the probability density function (pdf), fMk(yi|ψMk), that

approximates or estimates the true pdf of the response variable yi, and does not

contain covariates (Stone 1990). As an extension of this model, the doubly flexible

logspline response model, fMk(yi|ψMk(xi; θ
Mk)), was introduced in Stone (1991) to

approximate or estimate the true pdf of yi, f(yi|xi), that depends on fixed predictor

variable(s) xi. Obviously, fMk(yi|ψMk) is a special case of fMk(yi|ψMk(xi; θ
Mk))

when ψMk(xi; θ
Mk) = ψMk . In this paper, fMk(yi|ψMk(xi; θ

Mk)) will be called

the logspline model and be of our interest in model selection. The asymptotics of

this family are well studied in Stone (1990, 1991) and research on other aspects are

in Crain (1974, 1976a, b, 1977), Barron and Sheu (1991), Kooperberg and Stone
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(1992), Kooperberg, Stone and Truong (1995), Leonard (1978), Silverman (1982),

Stone (1985, 1986), and Strawderman and Tsiatis (1996). In most of these papers,

the authors propose a data-driven technique to address problems in model selection,

and most use AIC (Akaike 1973) or BIC (Schwartz 1978) as the evaluation criterion.

In this paper, we will discuss the consistency of model selection criteria based on

the relationship among three types of models.

1) The unknown underlying “true” model MT , which the data come from. Let θ∗

and Θ∗ be the parameter vector and space of MT .

2) “Candidate” models Mk, which are models under consideration to fit the data.

Let θMk and ΘMk be the parameter vector and the parameter space of Mk. Assume

that the true model is the same as or nested in one of candidate models. When

we know or assume that the true model does not have a finite parameter space, a

nonparametric candidate model is often constructed based on assumed smoothness

and other properties of the true model (Stone 1990, 1991). As in many previous

studies (Bozdogan 1987, Shao 1993, 1996), we consider consistent model selection

between two candidate models, M1 and M2. A consistent model selection criterion

chooses the better model for any sufficiently large n.

As a nonparametric candidate model, we consider the logspline model with the

number of parameters JMk increasing with n. Then we assume that the parameter

space of Mk expands cumulatively with the sample size n. In other words, for any

n′ > n, a candidate model Mk for the sample size n is the same as or nested in

Mk for the sample size n′. As a parametric candidate model, we consider a model

that has the same pdf as the logspline model, but with a finite and fixed number of

parameters for any n. Normal linear regression, Poisson regression, logistic regression

and many other generalized linear models are included in this family.

3) The “encompassing” model M∪, whose parameter vector θM∪ consists of all pa-

rameters in candidate models (Berger and Pericchi 1996). Let JM∪ be the dimension

of θM∪ . Note that JM∪ ≥ JMk for any k and any n. Denote parameter spaces of
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M∪ by ΘM∪ . The following example is provided for better understanding of these

notations.

Example 1 True, candidate, and encompassing models

Suppose that there are a small number of observations of interest from the “true”

model MT , yi = θ∗0 + θ∗1exp(xi) + εi where εi is independently and identically dis-

tributed (iid) with N(0, 1), yi is a response variable and xi is a predictor of the ith

observation. Assume that the variance of εi is known. Remember that, in this paper,

MT is assumed to be the same or nested in one of candidate models. An analyst may

consider two “candidate” models:

• M1 : yi = θM1
0 +θM1

1 xi+θ
M1
2 x2

i +θ
M1
3 x3

i +θ
M1
4 (xi−1)3

++θM1
5 (xi−2)3

++εi, where

where (xi−tj)+ = max(0, xi−tj) and tj’s are knots in the spline (nonparametric

regression spline model, Ruppert, Wand and Caroll 2003).

• M2 : yi = θM2
0 + θM2

1 exp(xi) + εi (parametric model).

Then, the “encompassing” model M∪ is: yi = θM∪
0 + θM∪

1 xi + θM∪
2 x2

i + θM∪
3 x3

i +

θM∪
4 (xi − 1)3

+ + θM∪
5 (xi − 2)3

+ + θM∪
6 ex

i + εi. Therefore, JM1 = 6, JM2 = 2 and

JM∪ = 7.

In Section 2, details on the logspline model are given. In Section 3, we consider the

case when a nonparametric model (JM1 →∞) and a parametric model (JM2 <∞)

are compared, whereas selection between parametric models (JMk <∞ for k=1,2) is

most frequently studied in other model selection literature (Gelfand and Dey 1994,

Shao 1993, etc.). Also, we give the needed definitions and the sufficient conditions

for particular classes of model selection procedures to be consistent. As applications

of results in Section 3, the consistency of AIC, BIC, RIC (Foster and George 1994),

HQ (Hannan and Quinn 1979) and leave-one-out (Shao 1993) are examined in Section

3. When n is finite, the error rates of model selectors are often used to evaluate the
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performance of model selectors. However, in Section 4, we show that they are not

sufficient by themselves because they depend on the relationship between the true

model and the candidate models.

2 LOG SPLINE MODELS

Consider a random response variable yi with the unknown true pdf f(yi|xi), with

fixed predictor(s) xi. Assume that f(yi|xi) is continuous and positive for any real

numbers xi and yi. A logspline model Mk that estimates or approximates f(yi|xi) is

defined (Stone 1991) by

fMk(yi|ψMk(xi; θ
Mk)) = exp

pMk∑
i=1

ψMk
i (xi; θ

Mk)BMk
i (yi)− cMk(ψMk(xi; θ

Mk))

 (1)

where

ψMk
i (xi; θ

Mk) =

q
Mk
i∑
j=1

θMk
ij AMk

ij (xi),

cMk(ψMk(xi; θ
Mk)) = log


∫

exp

pMk∑
i=1

ψMk
i (xi; θ

Mk)BMk
i (yi)

 dy

 ,

and AMk
ij (xi) and BMk

i (yi) are spline basis functions. The total number of parameters

for estimation is JMk =
∑pMk

i=1 qMk
i . From now on, let cMk(θMk) = cMk(ψMk(xi; θ

Mk))

for notational simplicity. See Stone (1991) for regularity conditions for this model

and Stone (1990, 1991) for asymptotic properties of this model. The following ex-

ample shows that the normal (cubic) regression spline model (Ruppert, Wand and

Caroll 2003) is a special case of a logspline model. This implies that the normal linear

regression can be also expressed with the pdf of the logspline model.

Example 2 Normal regression spline

Suppose the relationship between xi and yi is explored with a normal regression spline,

yi = θMk
0 + θMk

1 xi + θMk
2 x2

i + θMk
3 x3

i +

qMk−4∑
j=1

θMk
j+3(xi − tj)

3
+ + εMk

i
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where (xi− tj)+ = max(0, xi− tj), tj’s are knots in the spline and εMk
i

iid∼ N(0, σ2Mk).

The number of knots increases with the sample size n.

Let AMk
j (xi) = (1, xi, x

2
i , x

3
i , (xi − t1)

3
+, . . . , (xi − tqMk−4)

3
+) and

θMk = (θMk
0

T
, . . . , θMk

qMk−1

T
, σ2Mk)T . The pdf of the regression spline model is

fMk(yi|ψMk(xi; θ
Mk)) =

1√
2πσ2Mk

exp

−
{
yi −

∑qMk−1
j=0 θMk

j AMk
j (xi)

}2

2σ2Mk


= exp

qMk−1∑
j=0

θMk
j AMk

j (xi)

σ2Mk
yi −

y2
i

2σ2Mk
−

{∑qMk−1
j=0 θMk

j AMk
j (xi)

}2

2σ2Mk
+ log

(
1√

2πσ2Mk

) ,
which has the form of the logspline model (1) with

ψMk
1 (xi; θ

Mk) =

qMk−1∑
j=0

θMk
j AMk

j (xi)

σ2Mk
, BMk

1 (yi) = yi, ψ
Mk
2 (xi; θ

Mk) = − 1

2σ2Mk
, BMk

2 (yi) = y2
i ,

and

cMk(θMk) =

{∑qMk−1
j=0 θMk

j AMk
j (xi)

}2

2σ2Mk
− log

(
1√

2πσ2Mk

)
.

This model has JMk = qMk + 1 parameters.

3 CONDITIONS FOR CONSISTENT MODEL SE-

LECTION CRITERIA IN LOG SPLINE MOD-

ELS

In this section, we will define a general form of information criteria, ICMk , and find

the conditions when ICMk is consistent.

Define the model selection criteria ICMk for model Mk with the sample size of n

as

ICMk = sup
θMk∈ΘMk

`Mk(θMk)− a(n) JMk , (2)
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where ΘMk is the parameter space of model Mk, `
Mk(θMk) is the log-likelihood, a(n)

is a positive non-decreasing function of n and JMk is the number of parameters in

model Mk. In our paper, we assume JMk = o(n0.5−δ) for some δ ∈ (0, 0.5) for the

convergence of the MLE (Stone 1991). As examples of (2), there are:

• AICMk = sup
θMk∈ΘMk

`Mk(θMk)− JMk , which has a(n) = 1 (Akaike 1973).

• BICMk = sup
θMk∈ΘMk

`Mk(θMk) − log(n)
2

JMk , which has a(n) = log(n)
2

(Schwartz

1978).

• RICMk = sup
θMk∈ΘMk

`Mk(θMk) − log(JM∪) JMk , which has a(n) = log(JM∪)

(Foster and George 1994).

• HQMk = sup
θMk∈ΘMk

`Mk(θMk) − log(log(n)) JMk , which has a(n) = log(log(n))

(Hannan and Quinn 1979).

The supremum of the likelihood, sup
θMk∈ΘMk

`Mk(θMk), is a measure of how well the

model Mk fits the data and a(n) JMk is a penalty to prevent choosing an overfitted

model. The model that explains the data well and is parsimonious should have a high

ICMk value. In the comparison of two models M1 and M2, we choose M2 over M1

if ICM2 > ICM1 .

In evaluating the performance of the model selection criteria in terms of the model

selection error rate, two approaches are frequently used: 1) consistency of the model

selection criteria assuming a sufficiently large sample size, which we will focus on in

this section, and 2) estimation of the model selection error rate using Monte Carlo

simulations for small samples, which will be discussed in Section 4.

In this section, we setM1 to be a nonparametric model andM2 to be a parametric

model without loss of generality. Also, we assume that the regularity condition (the

σ-quasiuniform condition on the knot sequence, Stone 1991) is satisfied so that non-

parametric candidate models converge to the true model. A model selection criteria
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is consistent if

P [Choose a better model] → 1, as n→∞.

Equivalently, if the error rate of the model selector goes to 0, then it is called a

consistent model selection criterion. Consider the following two cases to establish the

consistency conditions of a model selection criterion.

• Case (i) when the true model MT is not nested in parametric model M2:

For example, when the true regression model has an exponential curve, a cubic

regression spline (M1) and a cubic regression (M2) can be considered as candi-

date models. Even with large n, M2 cannot explain the data properly, but M1

can approximate the true model with large n (M1 →MT ). Therefore, M1 is

the better model in this case.

• Case (ii) when the true model MT is nested in parametric model M2:

For an example, when the true regression model has an exponential curve, a

cubic regression spline (M1) and a regression with an exponential curve (M2)

can be considered as candidate models. Because M1 →MT , both models will

be the same as the true model with large n. Because JM1 > JM2 , M2 is a

better model because of parsimony.

Aside from Case (i) and (ii), it is difficult to discuss consistency because it is not

clear which candidate model is better than the other. Similar arguments appeared in

many other papers to prove consistency when the number of parameters is finite (Boz-

dogan 1987, Shao 1993 and references contained therein). The consistency conditions

of these two cases are discussed in the following theorem.

Theorem 1 Let y1, . . . , yn be iid random variables from the logspline family (1). Also

let JM1 and JM2 be the number of parameters to be estimated in a nonparametric

model M1 and a parametric model M2. A model selection criterion, ICMk , is con-
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sistent if

JM1 = o(n0.5−δ) for some δ ∈ (0, 0.5),
a(n)JM1

n
→ 0 and a(n) →∞,

as n→∞.

Proof The proof is summarized as follows (See Appendix A for detailed proof).

First of all, JM1 = o(n0.5−δ) for some δ ∈ (0, 0.5) is needed for the MLE convergence

in M1 (Stone 1990, 1991). In Case (i), a model selection criterion chooses the better

model M1 consistently if
a(n)JM1

n
→ 0.

In Case (ii), consistency requires

a(n) →∞.

�

Besides ‘nonparametric vs parametric’ model comparisons, which is of our interest

in this paper, there are two other possible cases of model comparisons-‘parametric vs

parametric’ and ‘nonparametric vs nonparametric’ model comparisons. Remark 1-3

discuss these comparisons and applications of Theorem 1.

Remark 1 Parametric vs. Parametric Models

Consider a situation when both candidate models have a finite number of parameters

for any sample size (i.e. linear vs. quadratic regression models). By setting JMk <∞

for k = 1, 2, the consistency conditions in Theorem 1 may degenerate to

a(n)

n
→ 0 and a(n) →∞, (3)

which are given in many other papers concerning parametric model comparisons (for

example; Bozdogan 1987 and Shao 1993). For this case, BIC and HQ are consistent,

but AIC and RIC are not.
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Remark 2 Nonparametric vs. Parametric Models

Suppose that one candidate is a nonparametric model and the other is a parametric.

Then, Theorem 1 shows that BIC, RIC and HQ can be consistent depending on

JM1 , whereas AIC is inconsistent.

Remark 3 Nonparametric vs. Nonparametric Models

Suppose that the candidates are two nonparametric models. This case includes the

selection of knots in nonparametric models. When the sample size n is infinite, both

candidates are equivalent to the true model. Also, it is not practically meaningful

to select the better model based on parsimony, because both candidates have infinite

numbers of parameters with a large n. Therefore, nonparametric models are better

compared based on the convergence rates of nonparametric models as n → ∞. See

Stone (1991) for detailed discussions on the convergence rates of the logspline models.

It is known that AIC, Cp, jackknife, bootstrap (Efron 1983) and leave-one-out

cross validation are asymptotically equivalent and inconsistent when only parametric

models (JMk <∞) are considered as candidates (Shao 1993). As another applications

of Theorem 1, Corollary 1 shows inconsistency of the leave-one-out cross validation

(CV (1)) in nonparametric vs. parametric model comparisons. CV (1) is defined as

Γ̂Mk CV (1) =
1

n

n∑
i=1

[
yi −XMk

i θ̂Mk (i)
]2

where θ̂Mk (i) is the MLE of θMk without the ith observation. The following Corollary

can be established.

Corollary 1 In the comparison of a regression spline model (M1) and a parametric

regression model (M2), the leave-one-out cross validation CV (1) is inconsistent.

Proof: See Appendix B
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4 MODEL SELECTION ERROR RATE WHEN

THE SAMPLE SIZE IS FINITE

The purpose of this section is to explore error rates of model selection criteria ICMk ’s

when the sample size is finite. Using simulation studies, we demonstrate that there is

no clear-cut preferred model selection criterion with respect to model selection error

rates.

4.1 Simulation Study with Two Candidate Models

Consider two candidate models: M1 (the cubic regression spline with two equally-

spaced knots) and M2 (the quadratic regression model). Model M1 is a flexible

nonparametric model that, with large n, can approximate any true regression model.

Also, note that M2 is nested in M1. Define `M1 and `M2 as the maximum log-

likelihoods for M1 and M2, and JM1 and JM2 as the numbers of parameters in

these models. For the simulation studies in Table 1, data sets are generated 10,000

times from each true model with the sample sizes n=50 and 100. Suppose, because

the number of parameters in M1 is determined with a slowly increasing function of

n, M1 has two knots for both n=50 and 100. For example, M1 may be designed

to have as many knots as the closest integer to n1/5. The first true model is MT1:

yi = 1 + sin(xi) + 3cos(xi) + 4log(xi) + εi, where εi
iid∼ N(0, 0.152). Because MT1

is not nested in M2, this can be an example of Case (i). The predictor vector

x = (x1, . . . , xn)T is constructed with n equally spaced real numbers within a given

range. For example, when xi ∈ [1, 3], x = (1, 1 + 1/(n − 1), . . . , 3)T . This true

model has an infinite dimensional parameter space in terms of regression spline bases.

Because M1 is a nonparametric model, of which the number of parameters increases

with n, M1 can fit the data with a large n as good as the true model MT1 does.

But M2 cannot. Even with a finite n, M1 can fit a complicated trend in MT1 better

than M2 can. Therefore, M1 is considered as the better model in this case.



Model Selection Error Rates 11

Because

`M1 − a(n)JM1 < `M2 − a(n)JM2 ⇔ `M1 − `M2 < 3a(n),

the model selection error rate is

P (`M1 − `M2 < 3a(n)). (4)

This error rate is “analogous” to type II error when we test “Ho: M2 is the true

model” with the log likelihood ratio, as different ICMk ’s correspond to testing with

different rejection regions. The magnitude of a(n)’s at each fixed n determines the

rejection regions and the error rates of ICMk ’s. For example, for n = 50 or 100, we

have

aAIC(n) < aHQ(n) < aRIC(n) < aBIC(n),

where aAIC(n) = 1, aHQ(n) = 3
2
log(log(n)), aRIC(n) = log(JM∪) = log(JM1) and

aBIC(n) = log(n)/2. Then, the error rate also increases in the order of AIC, HQ,

RIC and BIC. Different error rates of ICMk ’s are caused by a choice of a(n) or

rejection regions of the test.

Figure 1 shows the mean function of MT1 and the closest quadratic function that

minimizes ∫
|(1 + sin(xi) + 3cos(xi) + 4log(xi))− (β0 + β1xi + β2x

2
i )|dxi. (5)

The true mean function is closer to the quadratic function when xi ∈ [3, 5] (Figure

1-(b)) than when xi ∈ [1, 3] (Figure 1-(a)). Therefore, in simulation studies, model

selection criteria are expected to have a higher model selection error rate when data

are simulated with xi ∈ [3, 5] than with xi ∈ [1, 3], selecting quadratic model M2

more often.

[Figure 1 about here.]

[Table 1 about here.]
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Table 1 reports the rates of choosing each candidate model. For example, AIC

chooses the spline model M1 with probability 0.684 when 100 observations are simu-

lated from MT1 with xi ∈ [3, 5]. Because M1 is considered as the better model, 0.684

is one minus the model error rate or a successful model selection rate. As expected,

the overall performance of the model selection criteria in Table 1 is better when the

data are simulated from MT1 with xi ∈ [1, 3] than with xi ∈ [3, 5]. Also, the model

selection error rates also increase in the order of AIC, HQ, RIC and BIC. Note

that AIC is the best model selection criterion because a small aAIC(n) makes AIC

choose a larger model M1 with higher probability. As the sample size increases, the

error rates of all model selection criteria are reduced.

Now consider the quadratic model MT2: yi = 1 + xi + x2
i + εi as the true model,

from which the data are generated. In this case, M2 is the better model because

of parsimony. Because MT2 is nested in M2, this can be an example of Case (ii).

Similar patterns are observed as in the previous simulations with MT1, except that

the order of the ICMk ’s is reversed for error rates (in the second last column of Table

1). Here, error rates are “analogous” to type I error. Error rates increase in the order

of BIC,RIC,HQ and AIC when n=50 or 100. Note that BIC is the best model

selection criterion because a large aBIC(n) makes BIC choose a smaller model M2

with a higher probability.

The simulation results can be summarized as follows. When two candidate models

M1 andM2 are considered, the magnitudes of a(n)’s determine which model selection

criterion performs best in terms of model selection error rates. When the true model

is not nested in M2, the ICMk with the smallest a(n) is the best for any true model

and any sample size. When the true model is nested in M2, the ICMk with the

largest a(n) is the best for any true model and any sample size. If more than two

candidates are compared and the true model is neither the smallest or the largest

model, the closeness (5) between the true and candidate models becomes another

important factor in determining the order of the model selection criterion in terms of
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error rates.

4.2 Simulation Study with Three Candidate Models

In many papers (for example; Shao 1993, 1996), simulation studies consider more

than two candidate models. As an example of this subsection, consider simulated

data from MT1 and three competing candidate models-M1, M2 and M3. Candidate

models M1 and M2 are the same as defined in the previous simulation studies and

M3 is the candidate model with the exactly same parametrization as the true model

MT1: yi = β0 + β1sin(xi) + β2cos(xi) + β3log(xi) + εi. This will be called the exact

model, distinguishing from the true model with known parameter values. Obviously,

M3 is the best candidate model in this case. Candidates, M1, M2 and M3, have

3, 4, 6 parameters in their mean functions, respectively. Simulation studies for the

sample size 50 and 100 are conducted with these models and results are given in Table

2.

As discussed previously, the true mean function is close to the quadratic function

when xi ∈ [3, 5] (Figure1-(b)). This makes the competition between the quadratic

model M2 and the exact model M3 tense when xi ∈ [3, 5]. Although the spline

model M1 can also generate a mean function as M2 does, M1 has a higher number

of parameters, which is penalized by a(n) in ICMk ’s. In this case, ICMk with a small

a(n) may perform better because a small a(n) makes ICMk choose M3 with a large

number of parameters instead of M2. In Table 2, AIC has the lowest model selection

error rate 0.426(=0.147+0.279) and 0.261(=0.146+0.115), or equivalently the highest

successful model selection rate 0.574 and 0.739 for n=50 and 100. When xi ∈ [1, 3],

the true mean function is relatively far from the quadratic function (Figure1-(a)).

Therefore, ICMk can determine easily that M3 is better than M2. Table 2 shows

that all model selection criteria choose M2 with probability zero or very close to zero

probability. Because the spline model M1 is more flexible and can fit the data better

than M2, the competition between M1 and M3 is a little more tense than between
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M2 and M3. Therefore, ICMk with higher a(n) should perform better penalizing a

high number of parameters in M1. Because of the highest a(n) value, Table 2 shows

that BIC has the lowest model selection error rates 0.031 and 0.012 (or the highest

successful model selection rates 0.969 and 0.988) with n=50 and 100. This simulation

study shows that the closeness of the true model and candidates is an important factor

that controls the model selection error rates. By controlling closeness of MT1 and

M2, we may also generate examples that has HQ or RIC as the best model selection

criterion.

The previous examples demonstrated that, even though the error rate has been

used as an important part of evaluation of the model selection criterion in many

papers (Bozdogan 1987, Hurvich, Shumway and Tsai 1990, Shao 1993, 1996, Zheng

and Lou 1995), it is not sufficient by itself to show which model selection criterion is

better than others. Therefore, it is necessary for researchers to choose examples very

carefully and state the limit of the simulation study for model selection error rates.

5 SUMMARY

Many new model selection criteria have been developed in past decades, comparing

with other criteria based on model selection error rates. While many other papers

are interested in comparing parametric models, this paper discusses error rates when

nonparametric and parametric models are compared. First, consistency conditions of

model selection criteria are provided for nonparametric and parametric model com-

parisons with a large n. When the number of parameters in the nonparametric model

is forced to be finite, these conditions may reduce to the conventional consistency

conditions in other papers for parametric comparisons. It shows the smooth connec-

tion between our and conventional results. Second, with a small n, error rates are

compared using simulation studies. Model selection error rates have been used as one

of most important measures in comparing model selection criteria. It is shown that
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the error rate may not provide a strong evidence of the best model selection criterion

by itself, because it varies easily depending on the candidate models and true model.

6 REFERENCES

Akaike, H. (1973) Information theory and an extension of the maximum likelihood

principle. In the Second International Symposium on Information Theory (B.N.

Petrov and F. Czaki eds.) Akademiai Kiado: Budapest, 267-281.

Barron, A.R. and Sheu, C. (1991) Approximation of density functions by sequences

of exponential families, Annals of Statistics, 19, 1347-1369.

Berger, J. and Pericchi, L. (1996) The intrinsic Bayes factor for model selection and

prediction. Journal of the American Statistical Association, 91, 109-122.

Bozdogan, H. (1987) Model selection and Akaike’s information criterion: General

theory and its analytical extensions, Psychometrika, 52, 345-370.

Crain, B.R. (1974) Estimation of distributions using orthogonal expansions Annals

of Statistics 2, 454-463.

Crain, B.R. (1976a) Exponential models, maximum likelihood estimation and the

Haar conditions. Journal of American Statistical Association, 71, 737-740.

Crain, B.R. (1976b) More on estimation of distributions using orthogonal expan-

sions. Journal of American Statistical Association, 71, 741-745.

Crain, B.R. (1977) An information theoretic approach to approximating a probabil-

ity distribution. SIAM Journal of Applied Mathematics, 32, 339-346.

Efron, B. (1983) Estimating error rate of a prediction rule: Improvement on cross

validation, Journal of American Statistical Association, 78, 316-331.



Model Selection Error Rates 16

Foster, D. and George, E. (1994) The risk inflation criterion for multiple regression,

Annals of Statistics, 22, 1947-1975.

Gelfand, A.E. and Dey, D.K. (1994), Bayesian Model Choice: Asymptotics and

Exact Calculations, Journal of Royal Statistical Society. B, 56, 501-514.

Haughton, D. (1988) On the choice of a model fit from an exponential family, Annals

of Statistics, 16, 190-195.

Haughton, D. (1994) Consistency of a class of information criteria for model selection

in non linear regression. Theory Probab. Appl., 37, 47-53.

Hannan, E.P., and Quinn, B.G. (1979), The determination of the order of an au-

toregression, Journal of the Royal Statistical Society, Ser. B, 41, 190-195.

Hurvich, C., Shumway, R., and Tsai, C. (1990) Improved Estimators of Kullback-

Leibler Information for Autoregressive Model Selection in Small Samples. Bio-

metrika, 77, 709-719.

Kooperberg, C. and Stone, C. (1991) A study of logspline density estimation, Com-

putational statistics & data analysis, 12, 327-347.

Kooperberg, C. and Stone, C. (1992) logspline density estimation for censored data,

Journal of Computational and Graphical Statistics 1, 301-328.

Kooperberg, C., Stone, C. and Truong, Y.K. (1995) Hazard regression, Journal of

American Statistical Association 90, 78-94.

Leonard, T. (1978) Density estimation, stochastic processes and prior information

(with discussion). Journal of Royal Statistical Society Ser. B 40, 113-146.

Mallow, C.L. (1973) Some comments on Cp, Technometrics, 15, 661-675.

Nishii, R. (1984) Asymptotic properties of criteria for selection of variables in mul-

tiple regression. The Annals of Statistics, 12, 758-765.



Model Selection Error Rates 17

Portnoy, S. (1988) Asymptotic behavior of liklihood methods for exponential families

when the number of parameters tends to infinity, The Annals of Statistics. 16

1 356-366.

Potscher, B.M. (1989) Model selection under nonstationarity: autoregressive models

and stochastic linear regression. Annals of Statistics 17, 1257-1274.

Ruppert, D., Wand, M.P. and Caroll, R.J. (2003). Semiparametric Regression. Cam-

bridge University Press, New York, 2003.

Shao, P. (1993) Linear model selection by cross-validation, Journal of the American

Statistical Association, 88, 486-494.

Shao, P. (1996) Bootstrap model selection, Journal of the American Statistical As-

sociation, 91, 655-665.

Shibata, R. (1976) Selection of the order of an autoregressive model by Akaike’s

information criterion, Biometrika 63, 114-126.

Shibata, R. (1981) An optimal selection of regression variables, Bimetrika 68, 45-54.

Silverman, B.W. (1982) On the estimation of a probability density function by the

maximum penalized likelihood method. Annals of Statistics, 10, 795-810.

Strawderman, R.L. and Tsiatis, A.A. (1996) On the asymptotic properties of a

flexible hazard estimator, The Annals of Statistics 24, 41-63.

Stone, C. (1990) Large sample inference for log-Spline models, The Annals of Sta-

tistics 18, 717-741.

Stone, C. (1991) Asymptotics for doubly flexible logspline response models, The

Annals of Statistics 19, 1832-1854.

Schwarz, G. (1978) Estimating the dimension of a model, Annals of Statistics 6,

461-464.



Model Selection Error Rates 18

Zheng, X. and Loh, W. (1995) Consistent variable selection in linear models, Journal

of the American Statistical Association 90, 151-156.

APPENDIX

A Proof of Theorem 1

The following arguments are based on the assumption that MLE converges (JM1 =

o(n0.5−δ) for some δ ∈ (0, 0.5), Stone 1990, 1991).

First, suppose that true model MT is not nested in parametric model M2 as in

Case (i). As n → ∞, for any true model MT , M1 converges to MT (M1 →MT ).

Therefore, M1 is the better model in this case.

P [selecting the better model]

= P
[
ICM1 > ICM2

]
= P

[
sup

θM1∈ΘM1

`M1(θM1)− a(n)JM1 > sup
θM2∈ΘM2

`M2(θM2)− a(n)JM2

]
= P

[
sup

θM1∈ΘM1

`M1(θM1)− sup
θM2∈ΘM2

`M2(θM2) > a(n)(JM1 − JM2)

]

= P

 sup
θM1∈ΘM1

 1

n

n∑
i=1


pM1∑
j=1

ψM1
j (xi; θ

M1)BM1
j (yi)− cM1(θM1)




− sup
θM2∈ΘM2

 1

n

n∑
i=1


pM2∑
j=1

ψM2
j (xi; θ

M2)BM2
j (yi)− cM2(θM2)


 >

1

n
a(n)(JM1 − JM2)



In order to show that this probability goes to 1, we need to know the convergence

of

sup
θM1∈ΘM1

 1

n

n∑
i=1


pM1∑
j=1

ψM1
j (xi; θ

M1)BM1
j (yi)− cM1(θM1)


 for k = 1, 2.
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Let θ̂M1 be the MLE of the parameter θM1 in model M1. By the uniqueness of

the maximum likelihood estimate (Stone 1991) we have that

sup
θM1∈ΘM1

 1

n

n∑
i=1


pM1∑
j=1

(
ψM1

j (xi; θ
M1)BM1

j (yi)− cM1(θM1)
)


=

 1

n

n∑
i=1


pM1∑
j=1

(
ψM1

j (xi; θ̂
M1)BM1

j (yi)− cM1(θ̂M1)
)


→

 1

n

n∑
i=1


pM1∑
j=1

(
ψM1

j (xi; θ
∗ M1)BM1

j (yi)− cM1(θ∗ M1)
)

 ,
where ψM1

j (xi; θ̂
M1) → ψM1

j (xi; θ
∗ M1). Then, by the weak law of large numbers,

1

n
∆`(n)

def
= sup

θM1∈ΘM1

 1

n

n∑
i=1

pM1∑
j=1

ψM1
j (xi; θ)B

M1
j (yi)− cM1(θM1)


− sup

θM2∈ΘM2

 1

n

n∑
i=1

pM2∑
j=1

ψM2
j (xi; θ

M2)BM2
j (yi)− cM2(θM2)


→ E

pM1∑
j=1

ψM1
j (x; θ∗M1)BM1

j (y)− cM1(θ∗M1)


−E

pM2∑
j=1

ψM2
j (x; θ∗M2)BM2

j (y)− cM2(θ∗M2)


> 0

Hence,

P [selecting the better model] = P

[
1

n
∆`(n)− a(n)(JM1 − JM2)

n
> 0

]
→ 1,

if
a(n)(JM1 − JM2)

n
→ 0 ⇔ a(n)JM1

n
→ 0 as n→∞.
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Next, suppose that true model MT is nested in parametric model M2 as in Case

(ii). Also, remind that JM1 > JM2 for any large n. Even though M1 →MT , M2 is

considered as the better model because of parsimony. Assume ψM∪
j (xi; θ̂

M∪) converge

to ψM∪
j (xi; θ

∗ M∪). Because ΘMk ⊂ ΘM∪(n) for k=1 and 2,

sup
θMk∈ΘMk

 n∑
i=1


pMk∑
j=1

ψMk
j (xi; θ

Mk)BMk
j (yi)− cMk(θMk)




≤ sup
θM∪∈ΘM∪

 n∑
i=1


pM∪ (n)∑

j=1

ψM∪
j (xi; θ

M∪)BM∪
j (yi)− cM∪(θM∪)




and

sup
θMk∈ΘMk

 n∑
i=1


pMk∑
j=1

ψMk
j (xi; θ

Mk)BMk
j (yi)− cMk(θMk)




−

 n∑
i=1


pM∪ (n)∑

j=1

ψM∪
j (xi; θ

∗M∪)BM∪
j (yi)− cM∪(θ∗M∪)


 ≥ 0.

Let

BM∪(yi) = (BM∪
1 (yi), . . . , B

M∪
pM∪ (n)

(yi))
T ,

ψM∪(x; θ̂M∪ − θ∗M∪) = (ψM∪
1 (x; θ̂M∪ − θ∗M∪), . . . , ψM∪

pM∪ (n)
(x; θ̂M∪ − θ∗M∪))T ,

and

5cM∪(θ∗M∪) =

[
dcM∪(θM∪)

dθM∪

]
θM∪=θ∗M∪

.

Then,

sup
θMk∈ΘMk

 n∑
i=1


pMk∑
j=1

ψMk
j (xi; θ

Mk)BMk
j (yi)− cMk(θMk)




−

 n∑
i=1


pM∪ (n)∑

j=1

ψM∪
j (xi; θ

∗M∪)BM∪
j (yi)− cM∪(θ∗M∪)




≤ sup
θM∪∈ΘM∪

 n∑
i=1


pM∪ (n)∑

j=1

ψM∪
j (xi; θ

M∪)BM∪
j (yi)− cM∪(θM∪)



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−

 n∑
i=1


pM∪ (n)∑

j=1

ψM∪
j (xi; θ

∗M∪)BM∪
j (yi)− cM∪(θ∗M∪)




=
n∑

i=1

pM∪ (n)∑
j=1

{
(ψM∪

j (xi; θ̂
M∪)− ψM∪

j (x; θ∗M∪))BM∪
j (yi)

}
−

{
cM∪(θ̂M∪)− cM∪(θ∗M∪)

}.

Using Lemma 14 in Stone(1990), we can show

cM∪(θ̂M∪)− cM∪(θ∗M∪) = 5cM∪(θ∗M∪)TψM∪(x; θ̂M∪ − θ∗M∪) +Op

(
JM∪(n)

n

)
.

Then

n∑
i=1

pM∪ (n)∑
j=1

{
(ψM∪

j (xi; θ̂
M∪)− ψM∪

j (x; θ∗M∪))BM∪
j (yi)

}
−

{
cM∪(θ̂M∪)− cM∪(θ∗M∪)

}
=

n∑
i=1

[{
BM∪(yi)−5cM∪(θ∗M∪)

}T
ψM∪(x; θ̂M∪ − θ∗M∪) +Op

(
JM∪(n)

n

)]
= Op(J

M∪(n)) +Op(J
M∪(n)) (Stone 1991, Lemma 13 and (21))

= Op(J
M∪(n))

Therefore, the difference of the sup’s in the following equation is bounded byOp(J
M∪(n)).

P [selecting the better model]

= P

[
sup

θM1∈ΘM1

`M1(θM1)− sup
θM2∈ΘM2

`M2(θM2)− a(n)(JM1 − JM2) < 0

]

= P

 sup
θM1∈ΘM1

`M1(θM1)− sup
θM2∈ΘM2

`M2(θM2)

JM∪(n)
− a(n)(JM1 − JM2)

JM∪(n)
< 0


→ 1

if
a(n)(JM1 − JM2)

JM∪(n)
→∞.

Because JM1/JM∪(n) → 1 and JM2 <∞, this condition is equivalent to a(n) →∞.
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Therefore ICMk is consistent if

JM1 = o(n0.5−δ) for some δ ∈ (0, 0.5),
a(n)JM1

n
→ 0 and a(n) →∞, as n →∞.

�

B Proof of Corollary 1

The leave-one-out cross validation, CV (1) of model Mk, is

ΓCV (1) Mk =
1

n

n∑
i=1

{
yi −XMk

i θ̂Mk (i)
}2

=
1

n

n∑
i=1

{
yi −XMk

i θ̂Mk

1− hMk
ii

}2

where θ̂Mk (i) is the estimate of θMk without the ith observation, θ̂Mk is the estimate

of θMk using all observations and hMk
i is the ith diagonal element of the projection

matrix HMk = XMk(XMk TXMk)−1XMk T . Suppose MT is nested in M2 as in

Case (ii). In this case, both candidate models converge to the true model as n→∞.

Because
(
1− hMk

i

)−2

= 1 + 2hMk
i +O

{(
hMk

i

)2
}

,

ΓCV (1) Mk =
1

n

n∑
i=1

(
eMk

i

)2

+
1

n

n∑
i=1

(
eMk

i

)2
[
2hMk

i +O

{(
hMk

i

)2
}]

=
1

n

n∑
i=1

(
eMk

i

)2

+
2JMkσ2

n
+ op

(
1

n

)
, (6)

where eMk
i = yi − XMk

i θ̂Mk , eMk =
(
eMk
1 , . . . , eMk

n

)T

and In is the n × n identity

matrix. The leave-one-out cross validation in (6) is asymptotically equivalent to AIC,

which has a(n) = 1. Therefore, CV (1) is inconsistent by Theorem 1.

�
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Table 1: The rate of choosing either quadratic regression or regression spline model.

True model M†
T1 M‡

T2

xi ∈ [1, 3] xi ∈ [3, 5] xi ∈ [3, 5]

n a(n) Spline] Quad> Spline Quad Spline Quad

AIC 50 1.00 0.999 0.001 0.489 0.511 0.149 0.851

BIC 50 1.96 0.976 0.024 0.137 0.863 0.014 0.986

HQ 50 1.36 0.997 0.003 0.317 0.683 0.064 0.936

RIC 50 1.79 0.986 0.014 0.175 0.825 0.021 0.979

AIC 100 1.00 1.000 0.000 0.684 0.316 0.128 0.872

BIC 100 2.30 1.000 0.000 0.192 0.808 0.006 0.994

HQ 100 1.53 1.000 0.000 0.453 0.547 0.033 0.967

RIC 100 1.79 1.000 0.000 0.349 0.651 0.019 0.981
† MT1 : yi = 1 + sin(xi) + 3 cos(xi) + 4 log(xi) + εi, where εi

iid∼ N(0, 0.152)
‡ MT2 : yi = 1 + x2

i + εi, where εi
iid∼ N(0, 0.152)

] M1 : yi = βM1
0 + βM1

1 xi + βM1
2 x2

i + βM1
3 x3

i + βM1
4 (xi − t1)3+ + βM1

5 (xi − t2)3+ + εM1
i

where t1 and t2 are equally spaced knots within the range of xi.
> M2 : yi = βM2

0 + βM2
1 xi + βM2

2 x2
i + εM2

i
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Table 2: The rate of choosing either quadratic regression, exact or regression spline

model: True model is yi = 1+sin(xi)+3 cos(xi)+4 log(xi)+εi where εi
iid∼ N(0, 0.152).

xi ∈ [1, 3] xi ∈ [3, 5]

Model selector n a(n) Spline] Quad> Exact† Spline Quad Exact

AIC 50 1.00 0.172 0.000 0.828 0.147 0.279 0.574

BIC 50 1.96 0.031 0.001 0.969 0.023 0.531 0.446

HQ 50 1.36 0.091 0.000 0.909 0.071 0.387 0.542

RIC 50 1.79 0.041 0.000 0.959 0.032 0.496 0.471

AIC 100 1.00 0.147 0.000 0.854 0.146 0.115 0.739

BIC 100 2.30 0.012 0.000 0.988 0.011 0.350 0.640

HQ 100 1.53 0.053 0.000 0.947 0.050 0.207 0.740

RIC 100 1.79 0.033 0.000 0.967 0.028 0.256 0.716
] M1: yi = βM1

0 + βM1
1 xi + βM1

2 x2
i + βM1

3 x3
i + βM1

4 (xi − t1)3+ + βM1
5 (xi − t2)3+ + εM1

i

where t1 and t2 are equally spaced knots within the range of xi.
> M2: yi = βM2

0 + βM2
1 xi + βM2

2 x2
i + εM2

i ,
† M3: yi = βM3

0 + βM3
1 sin(xi) + βM3

2 cos(xi) + βM3
3 log(xi) + εM3

i ,
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Figure 1: The true mean function yi = 1+sin(xi)+3cos(xi)+4log(xi) (dark-colored

line) and it’s closest quadratic function (light-colored line) when (a) xi ∈ [1, 3] and

(b) xi ∈ [3, 5].
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