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Objective Bayes model selection in
probit models
Luis Leon-Novelo,a Elías Morenob and George Casellaa*†

We describe a new variable selection procedure for categorical responses where the candidate models are all
probit regression models. The procedure uses objective intrinsic priors for the model parameters, which do not
depend on tuning parameters, and ranks the models for the different subsets of covariates according to their
model posterior probabilities. When the number of covariates is moderate or large, the number of potential
models can be very large, and for those cases, we derive a new stochastic search algorithm that explores the
potential sets of models driven by their model posterior probabilities. The algorithm allows the user to control
the dimension of the candidate models and thus can handle situations when the number of covariates exceed the
number of observations. We assess, through simulations, the performance of the procedure and apply the vari-
able selector to a gene expression data set, where the response is whether a patient exhibits pneumonia. Software
needed to run the procedures is available in the R package varselectIP. Copyright © 2011 John Wiley &
Sons, Ltd.
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1. Introduction

Categorical responses often appear in the analysis of the effect of a medical treatment, which is applied to
a collection of patients. These patients are typically characterized by a set of p potential covariates, and
a first important statistical problem in the presence of covariates is to reduce the dimension of the model
by retaining from the original p covariates those that have some influence in the observed responses.
Thus, we have a model selection problem in the class of 2p models.

In this paper, we describe a new variable selection procedure applicable to dichotomous responses
that are modeled with a probit regression. Although, under the 0 � 1 loss function, an optimal solution
is the model having the highest posterior probability, the 0 � 1 loss function might not be realistic for
many applications. One potential shortcoming is that submodels different from the true one are assigned
the same loss regardless of how far or close to the true one they are. Therefore, it seems appropriate
to not choose a single ‘optimal’ model but a subset of them having posterior probabilities over a given
threshold. Thus, the output of our model selection procedure will be a ranking of the models according
to their posterior probabilities.

The literature on variable selection in logistic or probit models is not large. Researchers have car-
ried out variable selection in logistic regression with ‘lasso’-type procedures. For instance, Meier et al.
[1] used a group lasso for logistic regression, whereas Kyung et al. [2] used the latent variable probit
model for Bayesian lasso variable selection. The Bayesian approaches tend to dominate, and researchers
typically solve the main difficulties in its formulation, the choice of the prior for the models involved
and for the model parameters, by using subjective priors. Swartz and Shete [3] did a simulation study
of the five types of variable selection in case–control logistic regression and found that a Bayesian
stochastic search based on a ‘spike-and-slab’ prior was the best performer. Chen and Dey [4] also used
a Bayesian approach and were particularly concerned with correlated binary responses in multivariate
logistic regression. In their study, the researchers developed subjective priors and selected models on the
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basis of their posterior probabilities. They carried out the evaluation of the procedure through examples
and simulations. Kinney and Dunson [5], who selected both fixed and random effects by using a fully
Bayesian approach, also considered correlated data. Sha et al. [6] also used Bayesian variable selection
and were particularly interested in the case where p is very large. Their analysis used conjugate priors,
and the researchers checked predictions with cross-validation.

Our proposal is to use objective priors for both the models, and their model parameters, in the Bayesian
variable selection problem. The justification for doing so is that because we are interested in variable
selection, it seems that the experimenter will not have prior information about the influential covariates,
and hence, little subjective prior information on the distribution of the regression coefficients can be
expected. Of course, if there is specific prior information, that can also be accommodated. Moreover, it
may also be the case that certain covariates are always to be included; our genomics example is such a
case. In this case, clinical variables (age and health) are always included in the model, and the variable
selector is run on the set of genes.

Although the use of automatic objective priors allows us to circumvent the difficulty of eliciting priors
for the regression coefficients, we need to implement objective intrinsic priors in probit models, which
has not yet been carried out. The main difficulty comes from the fact that even the analytic expression
of the Jeffreys prior for the probit regression model is very difficult to obtain, and hence, so is the com-
putation of the intrinsic priors for model comparison. However, we can cope with this by considering
the probit model to be a normal regression model with incomplete information, or equivalently, we look
at our dichotomous data ´ as a 0 � 1 thresholding transformation of a latent normal regression random
variable y. We proceed as follows. We first apply the standard intrinsic prior formulation to the latent
normal regression variables .y1; : : : ; yn/ and compute the marginals under the models for all the subsets
of the p potential set of regressors. Once this is carried out, we transform these marginals into marginals
for the dichotomous data ´, our actual observations. This is carried out via integration on the cosets of
the 0 � 1 observations .´1; : : : ; ´n/.

The proposed approach handles the large p small n problem through a new controlled-dimension
stochastic search in the space of models containing no more than q covariates, where q can be set by the
experimenter. If the number of covariates, p, is greater than n, the model posterior probabilities cannot
be computed. Thus, the search must be restricted to these lower dimensional models, that is, q 6 n. We
note that, in the large p small n case, the incorporation of subjective prior information allows for select-
ing models with more than n covariates, or even without any sample information. This is not the case
when using intrinsic priors, which produce an objective analysis where there is no subjective prior input.

We organize the remainder of the paper as follows. In Section 2, we briefly summarize, for complete-
ness, the standard Bayesian model selection framework and give the definition of intrinsic priors for the
model parameters. We also explain, in more detail, the basic idea of our approach. In Section 3, we com-
pute the intrinsic priors for the underlying hidden regression model and describe a numerical approach
to compute the Bayes factors for the dichotomous responses .´1; : : : ; ´n/. Section 4 contains details for
a stochastic search algorithm that explores the entire model space but allows the user to specify an upper
bound on the number of covariates. In Section 5, there is a simulation study to both assess the accuracy
of the procedure and compare it with other model selectors, notably the model selection procedure of
Hu and Johnson [7]. We also apply the proposed model selection criterion to a genomics data set, for
which the response is the incidence of pneumonia in patients in a hospital intensive care unit and their
gene expression levels are the covariates of the model. Section 6 contains some final remarks, and there
is a small technical appendix.

2. Using intrinsic priors

In this section, we first summarize a standard selection procedure based on Bayes factors, briefly
describe intrinsic priors, and finally show how a dichotomous observation can be thought of as the
incomplete observation of a continuous variable, a latent variable hierarchical model (see, e.g., [8]). The
dichotomous observation is an indicator of the sign of this continuous latent random variable modeled
through a regression model with known variance.

2.1. Model selection and Bayes factors

Let p.zj�j ; Mj / be the distribution of the sample z under a generic regression model Mj , where �j

represents the parameters under model Mj and Mj belongs to a finite set of models M D fMj ; j D
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1; : : : ; N g. Let p.zjMj / D R
p.zj�j ; Mj /�.�j jMj /d�j be the marginal distribution of the sample z

under model Mj , where �.�j jMj / denotes the prior distribution for the model parameters �j , and
p.z/ D PN

j D1 p.zjMj /�.Mj / is the marginal distribution of z, where �.Mj / denotes the prior
probability of model Mj .

In this setting, the posterior probability of model Mj is given by

�.Mj jz/ D p.zjMj /�.Mj /

p.z/
D BFj1.z/ �.Mj /=�.M1/

1 CPN
j D2 BFj1.z/ �.Mj /=�.M1/

; (1)

where

BFj1.z/ D p.zjMj /

p.zjM1/
D
R

p.zj�j ; Mj /�.�j jMj /d�jR
p.zj�1; M1/�.�1jM1/d�1

is the Bayes factor for comparing models Mj and M1, where M1 is a particular fixed model. In regression
analysis with a potential set of p regressors, N D 2p , and M1 is typically the intercept-only model.

Our Bayesian model selection procedure searches for models with high posterior probability, and from
expression (1), it follows that this is equivalent to searching for models with high values of BFj1.z/

�.Mj /. We remark that for intrinsic priors �I .�j jMj /, the Bayesian variable selection procedure for
normal regression models have excellent properties. In particular, they are consistent model selectors
and have moderate type I and type II errors for finite sample sizes [9,10].

Here, for the probit model, our variable selection procedure transforms classes of marginal densities
for normal regression variables into marginal densities for probit regression variables, so that the variable
selection procedure for probit models enjoys the original properties that are invariant under the probit
transformation. For instance, in the normal regression setting, consistency means that the posterior prob-
ability of the true model tends to one as the sample size grows. Now, in probit regression, the sample we
observe is a probit transformation of the sample from a normal regression. Thus, the true probit model is
contained in the image of a class of normal models that contains the true one. Consistency properties of
the procedure should now be understood in this setting. It is also the case that the probit transformation
of a normal sample entails a notable loss of sampling information (Section 2.3 for details).

2.2. Bayes factors for intrinsic priors

Consider two general models:

M1 W ˚p1.yj˛/; �N
1 .˛/

�
and M2 W ˚p2.yjˇ/; �N

2 .ˇ/
�

;

where �N .˛/ and �N .ˇ/ are default priors, for example, Jeffreys priors or reference priors. Frequently,
these priors are not integrable and thus are not suitable for testing. Berger and Pericchi [11] addressed
this problem by creating the ‘intrinsic Bayes factor’, a useable pseudo-Bayes factor constructed from the
Bayes factor for the aforementioned improper priors as follows.

Given a sample y D .y1; : : : ; yn/; define a minimal training sample (mTS) as any subsample of mini-
mal size such that the posterior distributions under both models are integrable. Formally, a subsample yT

of the observed sample y is an mTS if both
R

p1.yT j˛/�N
1 .˛/d˛ and

R
p2.yT jˇ/�N

2 .ˇ/dˇ are positive
and finite and if there is no subsample of yT satisfying these conditions.

For an mTS yT , consider the posterior of the parameters

�N
1 .˛jyT / / p1.yT j˛/�N

1 .˛/ and �N
2 .ˇjyT / / p2.yT jˇ/�N

2 .ˇ/:

The partial Bayes factor BF P
21.yT / is defined for the sample yT as

BF P
21.yT / D

R
p2.y�T jˇ/�N

2 .ˇjyT /dˇR
p1.y�T j˛/�N

1 .˛jyT /d˛
;

where y�T D ynyT . It can be easily shown that BF P
21.yT / D BF N

21.y/BF N
12.yT /, where BF N

21.y/ is
the Bayes factor for comparing M2 with M1 for the entire sample y and BF N

12.yT / is the Bayes fac-
tor for comparing M1 with M2 for the mTS yT . Both Bayes factors use improper default priors under
both models.
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To try to lessen the dependence of the partial Bayes factor on yT , Berger and Pericchi [11] intro-
duced the average of the partial Bayes factors BF P

21.yT / over the existing mTS yT in the sample y. This
arithmetic mean was called the arithmetic intrinsic Bayes factor BF AI

21 .y/, given by

BF AI
21 .y/ D BF N

21.y/ � meanyT

�
BF N

12.yT /
�

:

We note that BF AI
21 .y/ is not a Bayes factor. In particular, it does not satisfy the symmetric property of

the Bayes factors: BF AI
21 .y/ ¤ 1=BF AI

12 .y/. However, it is asymptotically equivalent to a Bayes factor
for the so-called intrinsic priors [11]. Later, Moreno et al. [12] proposed an ‘intrinsic limiting procedure’
for nested models (M1 is nested in M2 if for every ˛ there is a ˇ˛ such that p1.yj˛/ D p2.yjˇ˛/) for
defining the intrinsic priors .�N

1 .˛/; �I .ˇ//. The suggestion was to consider the Bayesian model for
these priors, that is,

M1 W ˚p1.yj˛/; �N
1 .˛/

�
and M2 W ˚p2.yjˇ/; �I .ˇ/

�
; (2)

where �I .ˇ/ D R
�I .ˇj˛/�N

1 .˛/d˛. The intrinsic prior for ˇ is obtained from the intrinsic prior for ˇ

conditional on ˛,

�I .ˇj˛/ D �N
2 .ˇ/ E

M2

yT jˇ

"
p1.yT j˛/R

p2.yT jˇ/�N
2 .ˇ/dˇ

#
. (3)

In this latter expression, the expectation is taken with respect to the distribution of mTS yT under the
larger model M2. Equivalently, we can write �I .ˇ/ D �N

2 .ˇ/ E
M2

yT jˇ BF N
12.yT /. The Bayes factor for

the intrinsic prior (BFIP) is then given by

BF IP
21 .y/ D

R
p2.yjˇ/�I .ˇ/dˇR
p1.yj˛/�N

1 .˛/d˛
: (4)

We note that the Bayes factor (4) does not depend on the data set but only on the sampling models.
Moreno et al. [12] showed that it is a limit of Bayes factors for proper priors and that it satisfies the
properties of a Bayes factor. In this paper, we will compute the Bayes factor for intrinsic priors in our
variable selection problem.

2.3. Probit models and intrinsic Bayes factors

Consider a sample z D .´1; : : : ; ´n/, where ´i , i D 1; : : : ; n, is a 0 � 1 random variable such that, under
model Mj , it follows a probit regression model with a j C1 dimensional vector of covariates xj , j 6 p.
That is, this probit model Mj has the form

´i j�i ; Mj � Bernoulli.´i j�i / with �i jMj D ˆ.x0
iˇj /; (5)

where ˆ denotes the standard normal cumulative distribution function and ˇj is a vector of dimension
j C 1. The first component of the vector xi is set equal to one so that when considering models of the
form (5), the intercept is in any submodel. The maximum length of the vector of covariates is p C 1.

The probit model (5) can be thought of as a regression model with incomplete sampling information.
Indeed, consider a random variable yi following a normal regression model, but only the sign of yi is
observed. More specifically, we observe the variable ´i D 1.yi > 0/, and on the basis of the informa-
tion provided by the sample ´ D .´1; : : : ; ´n/, we want to compare the regression models Mj having j

covariates, j 2 f1; : : : ; pg, with the intercept-only model M1.
For the sample y D .y1; : : : ; yn/0, the null normal model is

M1 W fNn.yj˛1n; In/; �.˛/g ;

where Nn.yj�; ƒ/ denotes the n-variate normal density with mean � and covariance matrix ƒ evalu-
ated at the vector y and 1n denotes a vector of ones. For a generic model Mj with j1 regressors, the
alternative model is

Mj W ˚Nn.yjXj ˇj ; In/; �.ˇj /
�

;

where the design matrix Xj has dimensions n�.j C1/. Researchers have developed intrinsic methodol-
ogy for the linear model, starting with Berger and Pericchi [13], which was further developed in [14] by

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011
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using the methods of Moreno et al. [12]. This intrinsic methodology gives us an automatic specification
of the priors �.˛/ and �.ˇ/, starting with the reference priors �N .˛/ and �N .ˇ/ for ˛ and ˇ, which are
both improper and proportional to 1. We again note that if there is a set of covariates that are to be kept
in every model, that set becomes the null model M1, and we proceed in the same way.

The marginal distributions for the sample y under the null model, and under the alternative model with
intrinsic prior, are formally written as

m1.y/ D
Z

Nn.yj˛1n; In/�N .˛/d˛;

mj .y/ D
“

Nn.yjXj ˇj ; In/�I .ˇj˛/�N .˛/d˛dˇ:

(6)

Because model M1 is nested in Mj for any j , the BFIPs BF IP
j1 .y/ D mj .y/=m1.y/ provide a consistent

model selection procedure; that is, provided that the true model is one of the 2p regression models, the
procedure chooses this true model with probability one when the sample size grows to infinity [10].

However, these are marginals of the sample y, but our selection procedure requires us to com-
pute the Bayes factor of model Mj versus the reference model M1 for the sample z D .´1; : : : ; ´n/.
Then, we transform the marginal mj .y/ into the marginal mj .z/ by using the probit transformations
´i D 1.yi > 0/, i D 1; : : : ; n. These latter marginals are given by

mj .z/ D
Z

A1�����An

mj .y/dy; (7)

where

Ai D
�

.0; 1/ if ´i D 1;

.�1; 0/ if ´i D 0;

and the required Bayes factor based on the intrinsic prior is BF IP
j1 .z/ D mj .z/=m1.z/.

3. Computing the Bayes factor

To compute the Bayes factor for the observable sample z, we proceed by first finding the analytic expres-
sions of both the intrinsic priors for the regression model and the marginal probabilities of y given in (6).
Then, we give an algorithm to compute the Bayes factor for the responses z defined above on the basis
of the computation of multivariate normal distribution probabilities.

3.1. Intrinsic priors for normal regression models

Let ZT be the design matrix of an mTS of a normal regression model Mj for the variable y that includes
j covariates plus the intercept. Then, if j C 1 is the dimension of ˇj , we haveZ

Nj C1.yT jZT ˇ; Ij C1/dˇ D
� jZ0

T ZT j�1=2 if rank .ZT / > j C 1
1 otherwise

:

Therefore, it follows that the mTS size is j C 1. We assume that the .j C 1/ � .j C 1/ square matrix ZT

is standardized‡; that is, all columns have mean zero and variance 1, except the first column, which has
all its entries equal to one.

In our context, because the priors for ˛ and ˇ are proportional to 1, the intrinsic prior for comparing
Mj versus M1, given in formula (3), becomes, after some simplification,

�I .ˇj˛/ D Nj C1

�
ˇj˛e1; 2.Z0

T ZT /�1
�

;

where e1 is a vector with the first component equal to 1 and the others equal to zero and Z0
T has j C 1

columns corresponding to j covariates and an intercept.

‡Although this assumption is not necessary, it is typically good practice and stabilizes the numerics.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011
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However, the matrix Z0
T ZT is unknown because it is a theoretical design matrix corresponding to the

training sample yT . It can be estimated by averaging over all submatrices, containing j C 1 rows, of the
n�.j C1/ design matrix Xj [15]. This average turns out to be (Appendix A) j C1

n
.X0

j Xj /, and therefore,

�I .ˇj˛/ D Nj C1

�
ˇj˛e1;

2 n

j C 1
.X0

j Xj /�1

	
:

Because we require X0
j Xj to be invertible, we need j C1 6 n. In other words, we will be able to compute

the intrinsic prior when the number of covariates, including the intercept, is smaller than or equal to the
sample size n.

The marginal of the sample y D .y1; : : : ; yn/0 under model Mj , conditional on ˛, is

mj .yj˛/ D
Z

Nn.yjXj ˇ; In/ Nj C1

�
ˇj˛e1;

2n

j C 1
.X0

j Xj /�1

	
dˇ D Nn.yj˛1; †j /; (8)

where †j D In C 2 Œn=.j C 1/� Xj .X0
j Xj /�1X0

j . Integrating out the parameter ˛ in expression (8) with

respect to the reference prior �N .˛/ D c (c is an arbitrary positive constant), we obtain

mj .y/ D c

.2�/.n�1/=2j10†�1
j 1j1=2j†j j1=2

exp
�
�1

2
y0ƒj y



; (9)

where ƒj D †�1
j � †�1

j 1.10†�1
j 1/�110†�1

j and has rank n � 1.
Similarly, the marginal of the sample y D .y1; : : : ; yn/0 under model M1 is

m1.y/ D c

n1=2.2�/.n�1/=2
exp

�
�1

2
ns2

y



;

where ns2
y D Pn

iD1.yi � Ny/2 and Ny D Pn
iD1 yi=n. We note that both marginals mj .y/ and m1.y/

depend on the arbitrary positive constant c that appears in �N .˛/.

3.2. Bayes factors for probit models

On the basis of the observed sample z, we now compute the marginals mj .z/ in (7). From expressions
(7) and (8), we have

mj .z/ D
Z

A

mj .y/dy D
Z

A

Z 1

�1
mj .yj˛/d˛ dy

D
Z 1

�1

Z
A

Nn.yj˛1; ˙j /dy d˛. (10)

The integral over A D A1 � � � � � An is the probability of the hypercube A assigned by the n-variate
normal distribution. Genz and Bretz [16] described an algorithm to efficiently and accurately compute
this probability possibly having ˙ 1 as the extreme points of its edges. The algorithm is implemented
in the R function pmvnorm in the R package mvtnorm by [17]. In other words, this function is able to
compute fj .Aj˛/ D R

A
Nn.yj˛1; †j /dy. The problem then reduces to the computation of

mj .z/ D
Z 1

�1
fj .Aj˛/d˛.

The marginal m1.z/ under M1 is obtained by replacing †j in (10) by the identity matrix In. Therefore,
the Bayes factor for comparing Mj with M1 for the intrinsic priors and data z can be computed as

BF IP
j1 .z/ D

R1
�1 fj .Aj˛/d˛R1
�1 f1.Aj˛/d˛

: (11)

We observe that fh.Aj˛/; h D 1; j , as a function of ˛, is very close to zero outside of the interval
. Ǫ � 6; Ǫ C 6/ where Ǫ D ˆ�1.

Pn
iD1 ´i=n/ is the maximum likelihood estimator of ˛ under M1, so

that the integral over the real line can be approximated by the integral over this interval.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011



L. LEON-NOVELO, E. MORENO AND G. CASELLA

4. A controlled-dimension stochastic search

Referring to the discussion following (1), we search for models with high values of BFj1.z/�.Mj /,
which is equivalent to searching for models with maximum posterior probability (Section 2.1). For the
variable selection problem, we find that using uniform prior weights on the models works well, so our
search is only driven by the Bayes factor (11). As mentioned in Section 3.1, this quantity can only be
calculated when the number of covariates (including the intercept) considered by the model is fewer
than the sample size, which is not always the case. For example, in the succeeding application, we have
significantly more genes per patient than patients.

Thus, we propose a random walk through the space of models with q 6 n � 1 covariates (recall
that the intercept is always included). The researcher selects the value of q, keeping in mind that the
smaller the value of q, the smaller is the space for the search, making the search algorithm more effi-
cient. We identify the models with a vector � 2 f0; 1gp, where M� includes the covariate j only if
�j D 1. Because the intercept is always included in the model, it is not considered in � explicitly. For
example, for � D .0; 1; 1; 0; : : : ; 0/, M� is the model that includes only the intercept and the second and
third covariates.

In theory, the vector � could be any p-dimensional vector of 0’s and 1’s. There are 2p such models,
and we denote this model space by MpWp. However, the feasible search space is the set of all models
taken from MpWp but having no more than n � 1 total covariates. In fact, our search works for any
q 6 n � 1 chosen by the researcher. There are

Pq
j D0

�
p
j

�
such models. We denote this model space by

MpWq and now describe a random walk with stationary distribution proportional to m� .z/ for � 2 MpWq .
We start by defining three vectors of indicator functions.

� ı 2 MpWp: This is a vector with 0 � 1 entries of the covariates in a latent model, where ıj D 1

indicates that the j th covariate is in the latent model. Note that ı can choose models having more
than q coefficients.

� A D .a1; : : : ; ap/: A vector with 0 � 1 entries indicating the active covariates in the model, where
aj D 1 indicates that the j th covariate is in the active set. This is the current subset of q covariates
from which we will use to iterate the stochastic search. We require that

Pp
j D1 aj D q.

� � 2 MpWq: This is a vector with 0 � 1 entries where �j D 1 indicates that the j th covariate is in the
model. The model has no more than q covariates, so

Pp
j D1 �j 6 q.

The initial point of the random walk is any .A.0/; ı.0/; � .0// such that
P

j a
.0/
j D q, ı.0/ 2 MpWp and

� .0/ 2 MpWq . The random walk consists of two Metropolis–Hasting steps, one for ı and one for A, from
which we construct � . Define ı ? A as the componentwise multiplication of ı and A. The user sets the
probability r , 0 6 r 6 1, and at iteration t , starting from .A.t/; ı.t/; � .t//, we have the following:

1. Update ı.t/: We only update components of ı.t/ that are in the active set. Write ı.t/ D .ı
.t/
A ; ı

.t/
Ac /,

where ı
.t/
A D fı.t/

j W a
.t/
j D 1g contains the active coefficients and ı

.t/
Ac D fı.t/

j W a
.t/
j D 0g contains

the inactive coefficients.
(a) With probability r : Replace ı

.t/
A with the candidate ıcand

A with coefficients

ıcand
A;j D

�
0 with probability 1=2
1 with probability 1=2 ;

set ıcand D .ıcand
A ; ı

.t/
Ac /, and construct the candidate � cand D ıcand ? A.t/. This is a vector of 0’s

and 1’s of length p with no more than q 10s.
(b) With probability 1 � r : Choose one coefficient of ı

.t/
A at random, and change 0 ! 1 or

1 ! 0, whichever applies, to create ıcand
A . Set ıcand D .ıcand

A ; ı
.t/
Ac / and construct the candidate

� cand D ıcand ? A.t/.
Calculate the Metropolis–Hastings ratio ˛1 D minf1; m�cand.z/=m�.t/.z/g and set

ı.tC1/ D
�

ıcand with probability ˛1

ı.t/ with probability 1 � ˛1 :

We now create a second � candidate, � cand 2 D ı.tC1/ ? A.t/.
2. Update A.tC1/: Choose one coefficient of A.t/ at random, and swap it from 0 ! 1 or 1 ! 0,

whichever applies, to create the candidate Acand. Create a third � candidate � cand3 D ı.tC1/ ? Acand.
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Calculate the Metropolis-Hastings ratio ˛2 D minf1; m�cand 3.z/=m�cand 2.z/g and set

A.tC1/ D
�

Acand with probability ˛2

A.t/ with probability 1 � ˛2
;

and set � .tC1/ D ı.tC1/ ? A.tC1/.

The model represented by � contains the covariates that are both active and in the latent model, for-
mally, � D ı ? A. The stochastic search is a random walk on the set MpWq of feasible models and has
stationary distribution proportional to m� .z/ or, equivalently, to the Bayes factor.

5. Simulations and applications

In this section, we evaluate the performance of the variable selection procedure through simulations and
then apply the procedure to the problem that originally motivated this work, a problem of selecting can-
didate genes associated with outcomes in an intensive care unit based on the information provided by a
probit sample z.

5.1. Comparison with the Hu and Johnson model selection algorithm

To compare the intrinsic procedure with that of Hu and Johnson (H&J) [7], we ran the simulation sce-
nario in Section 4 of that paper, evaluating all 215 D 32; 768 models. H&J generated the covariates as
independent and identically distributed standard normal random variables, and as they did, we simulated
n D 30 dichotomous observations from model (5) where the true simulated values are ˇi D 0:5i for
i D 0; : : : ; 6 and ˇi D 0 for i D 7; : : : ; 15. We used the hyperparameter values given in Section 4 of
H&J, and even though the true intercept parameter is equal to zero, it was included in every model.

We then looked at the top 50 models that each procedure chose (highest posterior probability). We
note that, although the true model contains six nonzero coefficients, this turns out to be a bad model
in the sense that if ˇ3 � ˇ6 are in the model, no selection procedure would then include ˇ1 and ˇ2, as
the amount of additional variability that they explain cannot overcome any dimension penalty (even the
naive F -to-enter has p-value equal to 0.18). This observation underlies an emerging strategy in selection
problems, especially with a large number of covariates. As statisticians, we have typically been trained
to look for the ‘true’ model; but sometimes, that is not feasible and may not be the right goal. Perhaps a
more suitable goal is to find good, meaningful models that explain a sufficient amount of variability.

Figure 1 compares the two procedures. In the left panel, we see that the intrinsic procedure consis-
tently selects more true coefficients, with the H&J procedure showing a number of dips in the number
of true coefficients selected. The right panel shows that the intrinsic procedure will select slightly more
false coefficients in the lower-ranking models but selects a comparable, and sometimes fewer, number of
false coefficients in the first 20 models (which, in practice, may be more than any experimenter is going
to examine closely).

5.2. Loss of information from dichotomizing

Here, we simulate the original normal data y, to which the probit transformation ´ is applied, and exam-
ine the performance of the BFIP for both data sets, the y and the ´. By doing so, we illustrate the behavior
of BFIP for probit samples and also compare the behavior of the BFIP for the original samples with the
behavior for probit samples, which give us an idea of the ‘loss of information’ from dichotomizing.

In our next comparisons, we have decided to include not only the H&J procedure but also the BIC, the
variable selection procedure of Schwarz [18]. Although much is known about the relationship of BIC
and BFIP in the linear model setting [10, 19], less is known in the probit regression case. We typically
expect BIC to be biased toward small models, and we want to see if this is the case in probit regression.
BIC also provides a default procedure to which we can calibrate any improvement.

We analyze the results of the proposed variable selection procedure for moderate sample sizes and
under four simulation scenarios. We first generate a sample y D .y1; : : : ; yn/ from the normal regression
model Nn.yjXˇ; In/ for n D 20, where we have six regressors. We sampled all covariate values from
the uniform U.0; 6/. We obtained the probit sample by setting ´i D 1.yi>0/.

We assign a uniform prior to the models Mj , and thus, we rank the models according to the values
of mj .´/ in (10) when using the information in the ´ data and according to the values of mj .y/ in (9)
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Figure 1. Comparison of the intrinsic procedure (solid lines) with the Hu and Johnson procedure (dashed lines).
For each procedure, we took the top 50 models that it selected. The left panel shows the cumulative mean number

(CMN) of true coefficients selected, and the right panel shows the CMN of false coefficients selected.

when using the information in the y data. We repeat the simulation 200 times and count the number of
times that the method ranks the true model in first place and the number of times it is in the top three of
the ranking.

The four scenarios are the same except for the values of the regression coefficients (the intercept is
always included) of the true model that are given in the first column of Table I. The H&J procedure is
the winner in the first row of Table I, where there is no signal in the data and the correct model is the
intercept-only model. This behavior is similar to what was seen in Section 5.1, where the H&J procedure
tended to select models with smaller numbers of coefficients. Throughout the rest of Table I, with respect
to the y data, the BFIP and the H&J procedure are competitive; and the BIC also does reasonably well.
However, the situation changes drastically when we look at selection using the ´ data. In this case, the
BFIP procedure clearly dominates the other two. This suggests that the loss of information in going from
the y to the ´ data affects BFIP much less than the other two procedures.

An overall conclusion is that the effectiveness of all of the model selectors is lessened when using the
´ data than when using the original data y, which is certainly reasonable. However, the BFIP .´/ still
provides valuable knowledge on the structure of the problem, more so as the true model contains more
covariates.

5.3. Application in association genetics

The following association genetics problem first motivated this work. The data corresponds to 47 patients
in an intensive care unit following trauma surgery. The physicians are concerned with how to better

Table I. Comparison of performance of the proposed model selection procedure, the BIC and the H&J
criterion for model selection.

Top choice Top three
Model y ´ y ´

True coefficients BFIP BIC H&J BFIP BIC H&J BFIP BIC H&J BFIP BIC H&J

0; 0; 0; 0; 0 144 132 156 62 82 107 170 173 187 89 121 138
1; 0; 0; 0; 0 166 148 169 121 68 83 197 185 193 164 82 134
�1; �1; 0; 0; 0 183 153 171 139 87 90 196 191 196 183 127 153
1; �1; 1; 0; 0 193 167 184 102 44 40 200 197 197 172 148 147

M D 200 samples of size n D 20 with p D 5 (plus intercept) covariates were simulated. From left to right: coefficients
of true model; number of times this model ranked first by using the information in y and ´ data, respectively, by the
Bayes factor for the intrinsic prior (BFIP), the BIC, and the Hu and Johnson (H&J) criteria; number of times the model
ranked in the top three by using the y and ´ data, respectively.
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manage postoperative sepsis (infection) and are interested to see if there is association with any subset
of genes. Here, we consider the 0 � 1 endpoint ‘pneumonia’; of the 47 patients, 39 of them exhib-
ited pneumonia. We employ our model selection algorithm to select the variables that are most highly
associated with the response.

For each patient, we measured gene expression of 296 genes in peripheral blood, along with three
clinical covariates: age, gender, and abbreviated injury score. These clinical covariates are always in the
model, and hence, they constitute the null model. We look for the set of genes that better explains the
response pneumonia after taking into consideration the clinical covariates. In other words, our goal was
to get the best model that includes the three clinical covariates and relevant genes.

We applied the proposed variable selection procedure to our data set of gene expression and search for
the model with the highest value of mj in (10). Because we have a small sample size, we expect that the
models with the highest BFIP will have few covariates, and we focus our search on the models with at
most 10 genes (i.e., considering the intercept and the three patient-level covariates, with at most q D 14

covariates).
We ran 10,000 iterations of the stochastic search. We show in Table II the 10 models with the highest

Bayes factors found by this search. Genes ERICH1 (non-annotated), OLFM1 (‘its abundant expression
in the brain suggests that it may have an essential role in nerve tissue’, GenBank), and BCL3 (related
with leukemia/lymphoma) are frequent in these models (in fact, ERICH1 appeared in 16 of the top 20
models). The clinician must choose the model with the best biological interpretation.

As an illustration of the possible use of this information, we look at some of the most frequently
appearing genes in Table II and select, for example, the genes listed in the third row of the table. With the
assumption of a multivariate normal prior for the regression coefficients with covariance matrix 100 � I,
Table III shows the 95% highest posterior density CIs for the regression coefficients. As expected, the
value zero is not included in any gene effect intervals, and the values in the table tell us that the lower is
the gene expression the more likely the patient will exhibit pneumonia (coded as ‘success’ or ´i D 1).

Furthermore, for each patient in the sample, we considered a future patient with the same covariate
values and computed the probability (and its highest posterior density CI) of exhibiting the disease. We
show the results in the left panel of Figure 2, where we see that all of these future patients have a high

Table II. The 10 models with the highest Bayes factor for the intrinsic prior found by
the stochastic search algorithm.

Rank Number of genes Genes

1 3 ARL10 ERICH1 OR4D1
2 3 GCLM OLFM1 TEP1
3 3 ERICH1 OLFM1 TEP1
4 3 BCL3 ERICH1 TMEM56
5 3 C8orf34 ERICH1 WDR26
6 3 ARPC5 ERICH1 ITGB1
7 2 ERICH1 PCNX
8 2 ERICH1 MLLT6
9 3 C8orf34 ERICH1 MLLT6
10 3 ERICH1 SETD4 TRIO

Table III. 95% highest posterior density CIs and means for regression
coefficients from the model in the third row of Table II.

Lower Upper Mean

(Intercept) �9:26 14.02 2.87
Age �0:10 0.56 0.20
Gender �13:66 2.91 �5:35

AIS �2:04 3.82 0.67
ERICH1 �22:75 �1:46 �10:91

OLFM1 �24:27 �2:57 �13:65

TEP1 �23:34 �3:50 �13:64

The prior covariance matrix for the coefficients is 100 � I.
AIS, abbreviated injury score.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011



L. LEON-NOVELO, E. MORENO AND G. CASELLA

Prob of Pneumonia

P
at

ie
nt

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Prob of Pneumonia

P
at

ie
nt

Figure 2. Each line represents the 95% highest posterior density CIs for the probability of exhibiting pneu-
monia for a (future) patient with the same covariate values as one in the sample. The dot represents the mean.
The line is red when the patient in the sample with these covariate values exhibited the disease and blue oth-
erwise. The left panel corresponds to the model with clinical variable plus the three genes found by using
the proposed model selection algorithm. The right panel corresponds to the model with only clinical variables

(no genomic information).

probability of matching the disease status of their in-sample counterpart. Many of these probabilities of
matching are close to one, which is not the case if we only consider the clinical variables. To see this,
the right panel in Figure 2 is the analogous plot to the one on the left but only including the clinical
covariates in the model, thus showing the relevance of the genetic information.

6. Discussion

We have proposed a new variable selection procedure for probit models. This procedure is embedded
in the intrinsic prior framework, and hence, the priors for the parameters of each competing model are
objective resulting in automatic priors that only depend on the structure of the sampling regression mod-
els. Further, these priors do not depend on any hyperparameter whose values need to be subjectively
assigned by the researcher; thus, no subjective prior elicitation is required.

We avoid the need to work with the extremely complex objective priors for probit models, in partic-
ular the intrinsic priors, by working instead with the intrinsic priors for the normal regression models,
the underlying models of the latent random variables that define the probit models. This allows us to
use the much simpler intrinsic priors for the regression parameters in normal models for computing
the marginals of the latent variables. Then, these marginals of the latent variables are transformed into
marginals of the observable probit data. That is all we need for doing variable selection in probit models.
We also note that this methodology can be generalized to the case of multiple responses, for example, to
the case of an ordered probit response or to the case of normal latent variables with unknown variances.

The use of the latent normal model leads us to probit regression, as opposed to logistic regression,
perhaps the most popular model for analyzing dichotomous data. However, this is really not a drawback,
as the end result from the models is quite similar. Indeed, Caffo and Griswold [20] noted that ‘in typical
settings, data cannot distinguish between probit and logit conditional link functions’ and further argue in
favor of the probit model. The typically small sample sizes in genetic studies makes distinguishing these
models even more difficult.

Here, we assumed a priori that all possible regression models are equally likely. Other priors for mod-
els can be used in (1), and in fact, we also explored the use of a uniform prior for models conditional on
a given number of covariates and a uniform prior for the number of covariates. Specifically, if a model
includes k covariates out of a total of p possible covariates, then the prior for it is

�
p
k

��1
, and the prior

for k is p�1; k D 1; : : : ; p. Under this prior, the models with few (and many) covariates are assigned
higher probability than that assigned to the models with approximately p=2 covariates. The use of this
prior in a simulation study (results not shown) showed that it was not a desirable performer.

Because the proposed procedure does not use subjective prior information, it can only consider mod-
els with dimension smaller than the sample size. This led us to construct a random search through the
space of models having a limited number of covariates, which is fixed by the researcher. This random
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search is, to our knowledge, new, and it is not specific to the intrinsic prior methodology. Thus, it can be
used for search models using other criteria, not just the posterior probability of models. This search is a
reliable alternative to step forward or backward searches.

We have applied the proposed model selection procedure to the detection of a subset of genes that, in
light of the data, have a high impact in the dichotomous response. As a by-product, we also provided
some inference conditional on the selected model, although we are aware that the inference does not
take into account the uncertainty introduced by the model selection procedure. More research needs to
be carried out to make an accurate inference in the presence of model uncertainty.

Lastly, all software needed to run the procedures in the paper is available free in the R package
varselectIP [21].

APPENDIX A. An estimating Z0
T ZT

The following result is asserted in [15], but the proof only appears in a technical report. We reproduce it
here for completeness. We estimate Z0

T ZT (ZT is the expected design matrix of the mTS) by averaging
the design matrix of all possible mTS. In our notation model, Mj has j covariates plus an intercept,
so a submatrix Xj has j C 1 columns. The total number of different training samples in the sample is
L D �

n
j C1

�
. Index with l , l D 1; : : : ; L, each one of these samples and denote by X.l/ the j C 1 � j C 1

submatrix of the design matrix X corresponding to the subsample l . Using the fact that each row of X is
in exactly

�
n�1

j

�
subsamples, we have

�X
l
X.l/0X.l/

�
ij

D
X

l

Xj C1

hD1
.X.l/0/ih.X.l//hj

D
Xj C1

hD1

X
l
.X.l//hi .X.l//hj

D
Xj C1

hD1

 
n � 1

j

!
.X/hi .X/hj

D
 

n � 1

j

!
.X0X/ij :

Therefore,

1Z0
T ZT D 1

L

X
l

X.l/0X.l/ D j C 1

n
X0X: (12)
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