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SUMMARY

Many applications of statistics involve estimating a weighted average of stratum-specific parameters.

We consider the case of known weights, motivated by a stratified survey sample of Medicaid participants

in which the parameters are population stratum means and the known weights are determined by the

population sampling frame. Assuming heterogeneous parameters, it is common to estimate the weighted

average with the weighted sum of sample stratum means; under homogeneity, one ignores the known weights

in favor of precision weighting. We focus on a general class of estimators, based on hierarchical models, that

encompasses these two methods but which also includes adaptive approaches. One basic adaptive approach

corresponds to using the DerSimonian and Laird (1986) model for the parameters. We compare this with

a novel alternative, which models the variances of the parameters as inversely proportional to the known

weights. For two strata, the two approaches coincide, but for three or more strata, they differ. We also

present computational details and apply the methods to the Medicaid data for illustration and comparison

in terms of mean squared error.

KEY WORDS: hierarchical model; weighted average; stratified sample; adaptive estimation; heterogene-

ity; shrinkage; survey sampling
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1. Introduction

Many applications of statistics involve estimating a weighted average of stratum-specific parameters,

representable as

θs = Σni=1wiθi,

where n is the number of strata, θi, i = 1, . . . , n are the stratum-specific parameters and wi, i = 1, . . . , n

are the weights, which are positive and sum to one. To motivate this article, we consider one such example,

which arises from a stratified sampling design to survey Medicaid participants in two Florida counties,

Duval and Broward, for satisfaction with medical care before and after Medicaid Reform. The website

ahca.myflorida.com/Medicaid provides information about the reform. Surveyed participants each belong

to one of five Medicaid health care plans in Duval County or to one of fourteen plans in Broward County. In

order to maximize power for plan-to-plan comparisons, equal sample sizes of 315 participants will be drawn

per plan; however, county-level summaries are also of interest. For illustration, we will focus on using sample

data to estimate for each of the two counties the mean age as of June 1, 2006 of Medicaid participants

under 85 years old who were continously enrolled for 6 months and who have valid phone numbers; because

participant age is known for the entire population, we will be able to compare our results with the “truth”.

The stratum-specific parameters are the mean ages for each of the health care plans within each county. The

weights are the relative sizes of the health care plans in each of the counties, respectively. Population and

sample data are presented in Table 1. Using the population data, we can compute θs, the “true” mean age,

for each county; for Duval, θs = 16.0634, and for Broward, θs = 15.7181. For expository purposes, we will

also focus on estimating the “true” mean age for plans 1,2, and 10 (the three plans with the most adults)

combined in Duval County, θs = 16.3354, as well as for plans 1 and 2 in Duval County, θs = 17.2049, and

finally for plans 4 and 6 in Duval County, θs = 13.5983.

Probably the most common estimator of θs is the weighted sum of the stratum-specific sample means Yi,

i = 1, . . . , n:

θ̂sa = Σni=1wiYi,

which is the best linear unbiased estimator (BLUE) of θs assuming the model

Yi = θi + ei, (1)

where the θi are fixed effects, and the ei are independent, approximately normal, mean zero error terms

with variances σ2
i . However, if the stratum-specific population means are nearly homogeneous (θi = θ0,

i = 1, . . . , n), then an estimator with lower mean-squared error weights the stratum-specific sample means

proportionally to their inverse-variances 1/σ2
i , i = 1, . . . , n:

θ̂sb =
Σni=1

Yi

σ2
i

Σni=1
1
σ2

i

,
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County Plan Size Population Mean Sample Mean Standard Error
Duval 1 2364 17.6142 16.4624 0.84383
Duval 2 22126 17.1612 17.3253 0.96718
Duval 4 655 9.4875 9.7463 0.30147
Duval 6 5005 14.1363 14.0505 0.68854
Duval 10 26812 15.5412 15.4785 0.81467
Broward 1 1635 20.1854 19.9434 1.02065
Broward 2 11888 19.6333 20.9653 1.15109
Broward 3 3807 23.3295 25.3604 1.22483
Broward 4 1592 9.6735 9.3911 0.31058
Broward 5 4203 19.4929 18.8638 0.96248
Broward 6 3622 19.7760 20.7541 1.05755
Broward 7 9803 8.9737 9.0365 0.27134
Broward 8 6079 15.0898 14.8424 0.87780
Broward 9 4915 13.7887 12.8639 0.74514
Broward 10 6916 13.4814 14.0492 0.76740
Broward 11 10050 17.1009 16.9052 0.98841
Broward 12 1310 20.4160 21.6371 1.04670
Broward 13 13538 13.0447 13.6365 0.73828
Broward 14 3370 17.8735 18.0644 0.95388

Table 1: Population and Sample Data for the Two Counties

where in practice, we will substitute the sample standard errors si for σi, i = 1, . . . , n. This estimator is the

BLUE of θs assuming the model

Yi = θ0 + ei,

where θ0 is a fixed effect, and the ei are as before. In practice, homogeneity is usually not known a priori,

and thus one strategy is to first test the null hypothesis of homogeneity using a one-way analysis of variance,

and then to select either θ̂sa or θ̂sb depending on whether the test rejects or not.

For the Medicaid data of Duval and Broward Counties considered separately, the tests of homogeneity

reject with p-values less than 0.001. However, when just plans 1,2, and 10 are evaluated in Duval County,

the test does not reject, based on a p-value of 0.331. Following the strategy we have just outlined, then, we

would choose θ̂sa for each county-level summary, and θ̂sb for the 3-plan summary of Duval County.

In this article, we focus on a general class of estimators based on hierarchical models. These encompass

θ̂sa and θ̂sb , but also include adaptive approaches resulting from modeling the θi as random and selecting the

variance parameters to minimize mean squared error. One basic adaptive approach corresponds to using the

DerSimonian and Laird (1986) model for the parameters. We compare this with a novel alternative, which

models the variances of the parameters as inversely proportional to the wi. We will evaluate competing

estimators of θs under a sampling model that conditions on the θi but not on the ei, i = 1, . . . , n. Thus,

bias, variance, and mean-squared error will be computed under a model that resamples the ei but leaves the

θi fixed. Whereas in this article, our inferences are confined to θs, the weighted mean of θi for our sample
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of n strata, one might instead be interested in the weighted mean of θi for a larger population of N strata

(in which case, the strata are usually called clusters), that is, in

θp = ΣNi=1w
p
i θi,

where the wpi are the weights normalized to the population rather than to the sample of n clusters. In this

case, the sampling distribution of competing estimators would be based on resampling both the θi and the

ei.

In the earlier literature, DuMouchel and Duncan (1983) considered estimation of θs in a more general

context; reduced to our problem, their results answer the question of when to use θ̂sa or θ̂sb . They developed a

test based on the difference statistic θ̂sa− θ̂sb , an approach that goes beyond the simple testing of homogeneity

outlined above by incorporating the weights wi into the decision. Pfeffermann and Nathan (1981) focused

on estimating θp in a more general context; reduced to our problem, their method corresponds to using the

DerSimonian and Laird (1986) model for the θi and estimating θp with Σni=1wiθ̂i, where the θ̂i are posterior

means.

Following Fay and Herriot (1979), who adapted the James-Stein estimator (James and Stein 1961) and

applied it to simultaneously estimate income in several areas with populations less than 1,000, the literature

on small-area estimation is rife with hierarchical models for the θi; see, for example, the review article by

Ghosh and Rao (1994) and the references therein. However, the focus in that literature is on simultaneous

estimation of the θi rather than on their weighted sum.

Another related literature is that of multilevel modeling of complex survey data, the title of a recent paper

by Rabe-Hesketh and Skrondal (2006). Following Pfeffermann et al. (1998), this literature concentrates on

estimating θp but in a more general context; when reduced to our problem, the basic idea is to model the

distribution of the θi in the entire population using a multilevel model that incorporates θp as a parameter.

The next step is to relate the data, generated under informative sampling, to the census model using either

weighting likelihoods (i.e. pseudolikelihoods, as in Rabe-Hesketh and Skrondal 2006) or weighted iterative

generalized least squares algorithms (as in Pfeffermann et al. 1998). In the present paper, we apply multilevel

(i.e. hierarchical) models for the sample (rather than the census) of θi, but rather than including θs (or,

more generally, θp) as a direct parameter in the models, we estimate it indirectly as Σni=1wiθ̂i, where the

θ̂i are posterior means. However, as we show in section 2, our novel hierarchical model, which models the

variances of the θi as inversely proportional to the wi, effectively incorporates θs as a direct parameter.

The last literature we will consider is that of generalized estimating equations (GEE, Liang and Zeger

1986), where the focus is on estimating the “population average” of clustered data. In the present paper, we

reduce each of the clusters to a single statistic Yi, which associates with a weight wi or wpi , depending on

whether θs or θp is the target of inference. In a recent paper, Williamson, Datta, and Satten (2003) address

the problem of GEE estimation with so-called informative cluster size; when reduced to our setting with the
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θi specified as cluster means rather than as general parameters (such as odds ratios, for example), what they

propose is to estimate θp for the special case of all wpi = 1
N , by using θ̂sa with wi = 1

n and the Yi encoding the

sample means of the clusters. However, their method is much different from the methods we consider when

the θi are general parameters, such as odds ratios, because their model makes incomprehensible assumptions

about the relationship between the θi and θp.

The present article is organized as follows. In section 2, we present the general hierarchical model and

consider three special cases. In section 3, we focus on optimal estimation with only two strata and show

that the adaptive approach arising from the DerSimonian and Laird (1986) model coincides with our novel

approach when n = 2. In section 4, we show that the two approaches differ when there are three or more

strata. In section 5, we discuss the details of estimation, including estimation of sampling distributions and

mean squared error (MSE). In section 6, we apply the resulting methods to the Medicaid data for illustration

and a comparison study of the estimators in terms of their estimated MSEs. Section 7 concludes with a

summary, a discussion of related issues, and proposals for future work.

2. Adaptive Estimators Based on Hierarchical Models

We focus on the general hierarchical model

Y |θ, µ, δ ∼ N(θ,Σ)

θ|µ, δ = ZWµ+ δ

δ ∼ N(hW , TW )

µ ∼ Up(−∞,∞), (2)

with Y = (Y1, . . . , Yn)T ; W = (w1, . . . , wn)T ; θ = (θ1, . . . , θn)T ; Σ a symmetric positive definite known

matrix; ZW an n×p matrix, possibly dependent upon W ; the vector hW and the symmetric positive definite

matrix TW functions of W and of hyperparameters; Up(−∞,∞) the improper uniform distribution for a

vector of p independent parameters; and δ and µ independent of one another given W . For the remainder

of the paper we will suppress the subscripts on ZW , hW , and TW . Additionally, we wish to emphasize that

all distributions are conditional on the known weights constituting W .

Under mild restrictions on Z, T , and Σ (Appendix 1), the conditional distribution of (µT , δT )T given Y

is multivariate normal with mean (µ̂T , δ̂T )T solving

ZTΣ−1Zµ+ ZTΣ−1δ = ZTΣ−1Y

Σ−1Zµ+ (Σ−1 + T−1)δ = Σ−1Y + T−1h. (3)

Multiplying the second of these equations by ZT and comparing to the first, we find that δ̂ satisfies the

p-dimensional linear constraint

ZTT−1(δ̂ − h) = 0. (4)
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This follows naturally from our setup, which uses the n + p parameters in µ and δ to represent the n-

dimensional parameter θ. We will later observe that this constraint influences our interpretation for µ,

analogous to how constraints in models with nonrandom µ and δ would do.

The equations at (3) can be re-expressed to solve for δ̂ independently of µ̂ as follows:(
I − (Σ−1 + T−1)−1Σ−1PΣ

Z

)
δ̂ = (Σ−1 + T−1)−1Σ−1

(
(I − PΣ

Z )Y − ΣT−1h
)
,

ZTT−1δ̂ = ZTT−1h (5)

with PΣ
Z = Z(ZTΣ−1Z)−1ZTΣ−1. In Appendix 2 we show that, again under mild restrictions on Z, T , and

Σ, the solution to these n+ p equations in n unknowns exists uniquely as

δ̂ = (A+ T−1)−1(AY + T−1h),

with A = (I − PΣ
Z )TΣ−1(I − PΣ

Z ) = Σ−1(I − PΣ
Z ). (6)

It follows from (3) that µ̂ equals

µ̂ = (ZTΣ−1Z)−1(ZTΣ−1)(Y − δ̂). (7)

The posterior distribution of θs given Y has mean

θ̂s = WT (Zµ̂+ δ̂)

= WT
(
(I − PΣ

Z )δ̂ + PΣ
Z Y
)
, (8)

which can also be expressed as

θ̂s = WT
(
(I −B)Y +BPΣ+T

Z (Y − h) +Bh
)
, (9)

where B = Σ(Σ + T )−1 (Appendix 3).

The posterior mean θ̂s is an admissible estimator of θs under squared-error loss for any particular speci-

fication of the general hierarchical model (2) (Lehmann and Casella, 1998, chapter 5). We can furthermore

turn θ̂s into an adaptive estimator by letting the data guide our selection of the hyperparameters implicit in

h and T . In this paper, we focus on T (we will later set h = 0); we specify T = τ2T0 with T0 a known matrix

(possibly dependent upon W), so that τ2 tunes the eigenvalues of T towards 0 or ∞. When the eigenvalues

of T tend towards ∞, the first equation at (5) tends towards

(I − PΣ
Z )δ̂ = (I − PΣ

Z )Y,

which implies that Zµ̂+ δ̂ → Y (see equation (8)), so that

θ̂s →WTY = θ̂sa; (10)

whereas, when the eigenvalues tend towards 0, δ̂ → h (see the first equation at (5), in which (Σ−1 + T−1) ≈

T−1), so that

θ̂s →WT
(
PΣ
Z Y + (I − PΣ

Z )h
)
, (11)
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which equals θ̂sb when (a) Z = 1p (the vector of p ones), (b) Σ equals the diagonal matrix with entries

σ2
1 , . . . , σ

2
n (denoted henceforth as Σd), and (c) h = 0. If we choose τ2 to minimize the estimated MSE

of θ̂s, we will adapt towards (10) or (11) depending on which limit optimizes the bias-variance trade-off

relative to the other. We observe that θ̂sa is minimax and that the right-hand side of (11) is admissible under

squared-error loss (Lehmann and Casella, 1998, chapter 5.)

We next compare and contrast three particular specifications of the general hierarchical model (2).

Model 1

Model 1 sets T0 = In, the n× n identity matrix; h = 0; Z = 1n; and Σ = Σd. This leads to

µ̂ =
Σni=1

Yi

τ2+σ2
i

Σni=1
1

τ2+σ2
i

,

and

δ̂i =
τ2

τ2 + σ2
i

(Yi − µ̂).

Furthermore, δ̂ satisfies the constraint Σni=1δ̂i = 0. Model 1 corresponds to the basic one-way mixed effects

ANOVA model used by DerSimonian and Laird (1986) for meta-analysis, in which W is typically (1/n)1n to

reflect the equally weighted mean of study-specific effects. With that choice of W , θ̂s = µ̂. But for general

W ,

θ̂s1 = Σni=1ηiYi, where

ηi = γi

(
τ2wi +

Σnj=1γjσ
2
jwj

Σnj=1γj

)
and

γi =
1

τ2 + σ2
i

; (12)

we observe that Σni=1ηi = 1. Note that θ̂s1 approaches θ̂a or θ̂b as τ2 →∞ or τ2 → 0.

Model 2

Model 2 sets T0 equal to a diagonal matrix with entries equal to 1/wi, i = 1, . . . , n and keeps h,Z, and

Σ the same as in Model 1. This leads to

µ̂ = Σni=1ηiYi, with

ηi =

1
τ2
wi

+σ2
i

Σni=1
1

τ2
wi

+σ2
i

, (13)

and

δ̂i =
(

1
σ2
i

+
wi
τ2

)−1(
Yi − µ̂
σ2
i

)
.

Note that Σni=1wiδ̂i = 0. Model 2 was briefly discussed by Brumback and Brumback (2005) in the present

context but with estimated weights, and by Ghosh and Maiti (1998) in the context of multilevel modeling
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under informative sampling. For general W , we find that the posterior mean of θs under Model 2, θ̂s2, equals

the µ̂ of (13), and that it, like θ̂s1, also approaches θ̂a or θ̂b as τ2 →∞ or τ2 → 0.

The Role of µ in Model 2 versus Model 1

That θ̂s2 equals the µ̂ of (13) parallels the role of µ in Model 2. The distribution specified for δ implies

that the θi corresponding to larger wi will be closer to µ; this information together with the constraint on

δ̂ induces us to interpret µ as θs and δi as θi − θs in Model 2. In contrast, the µ of Model 1 represents

θ̄ = (1/n)Σiθi, whereas the δi represent θi − θ̄. On first thought, this makes Model 2 ideal for our goal of

estimating θs. However, one might use the data to negotiate between Model 1 versus Model 2; as we show

in Appendix 4, if at least one wi is distinct from the rest, and if we condition on µ, a “supermodel” that

encompasses Model 1 and Model 2 is identifiable. In Sections 3 and 4, we refine this result for our purpose

of estimating θs. In section 3, we show that for n = 2, θ̂s1 and θ̂s2 are identical when we select the τ2 of Model

2 to equal the τ2 of Model 1 multiplied by 2w1(1− w1). In section 4, we show that θ̂s1 and θ̂s2 diverge when

n ≥ 3.

Model 3

We consider one more particular specification before moving on. Model 3 sets T0 equal to In, sets h equal

to a parametric function of W , e.g. (W − W̄ )β, where W̄ ≡ ((1/n)Σni=1wi) 1n and β is a scalar parameter,

and keeps Z and Σ the same as in Models 1 and 2. This leads to

µ̂ =
Σni=1

Yi−hi

σ2
i
+τ2

Σni=1
1

σ2
i
+τ2

,

where hi is the ith element of h, and

δ̂i =
(

1
σ2
i

+
1
τ2

)−1(
Yi − µ̂
σ2
i

+
hi
τ2

)
.

Thus,

θ̂s3 = Σni=1

(
ηiYi + wiσ

2
i γi(hi −

Σnj=1γjhj

Σnj=1γj
)

)
, where

ηi = γi

(
τ2wi +

Σnj=1γjσ
2
jwj

Σnj=1γj

)
, and

γi =
1

τ2 + σ2
i

. (14)

We observe that this estimator is not a simple weighted average of the Yi except when hi ≡ 0. In practice,

one would often choose to let Zµ subsume h; however, it is worth recalling that θ̂s3 is admissible under

squared-error loss no matter what value we choose for h. We note that θ̂s3 → θ̂sa as τ2 → ∞, and that it

approaches

θ̂sb + Σni=1wi

(
hi −

Σni=1
hi

σ2
i

Σni=1
1
σ2

i

)
,

as τ2 → 0. Due to space constraints, we leave the development of this approach for future work.
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3. “Optimal” Estimation with Only Two Strata

A natural question is whether we can use our adaptive estimators with h = 0 to approximately minimize

mean-squared error (MSE) over all estimators of θs of the form Σni=1νiYi, where the νi are positive weights

that sum to one. In this paper, we investigate the question for n = 2. The generalization to n > 2 is much

more complicated, and we leave it as a topic for future research. We consider the MSE of νY1 + (1 − ν)Y2

for known ν, computed based on the fixed effects model (1):

ν2
(
(θ1 − θ2)2 + (σ2

1 + σ2
2)
)
− 2ν

(
w1(θ1 − θ2)2 + σ2

2

)
+
(
w2

1(θ1 − θ2)2 + σ2
2

)
.

This function of ν is minimized when

ν = ν∗ =
w1(θ1 − θ2)2 + σ2

2

(θ1 − θ2)2 + (σ2
1 + σ2

2)
=

2w1s
2
θ + σ2

2

2s2θ + (σ2
1 + σ2

2)
, (15)

where s2θ = 1
n−1Σni=1(θi − θ̄)2, which equals (θ1 − θ2)2/2 when n = 2.

We observe that the weight θ̂s1 associates with Y1 is

ν′ =
2w1τ

2 + σ2
2

2τ2 + σ2
1 + σ2

2

,

which equals ν∗ when τ2 = s2θ. According to Model 1, conditionally on µ, var(θi) = τ2; thus, when n = 2,

the risk-minimizing choice of τ2 is a logical choice based on Model 1 and coincides with substituting s2θ for

var(θi).

Next we consider Model 2. We observe that the weight θ̂s2 associates with Y1 is

ν′ =
w1τ

2 + w1(1− w1)σ2
2

τ2 + w1(1− w1)(σ2
1 + σ2

2)
,

which equals ν∗ when τ2 = 2s2θw1(1− w1). According to Model 2, conditionally on µ,

1
n

Σni=1var(θi) =
τ2

n
Σni=1

1
wi
. (16)

Approximating 1
nΣni=1var(θi) by s2θ and noting that 1

2Σ2
i=1

1
wi

= 1/(2w1(1 − w1)) leads us again to τ2 =

2s2θw1(1−w1). Thus, when n = 2, the risk-minimizing choice of τ2 is also a logical choice based on Model 2.

In practice, s2θ must be estimated from the data, and the resulting “risk-minimizing” estimator loses its

optimality; by its equivalence to θ̂s1 or θ̂s2 for particular choices of τ2 we know that it is admissible, but

because we know that θ̂s1 and θ̂s2 are also admissible for other choices of τ2, the “risk-minimizing” choice does

not lead to a dominant estimator.

In the above investigation, we have incidentally discovered that, for n = 2, θ̂s1 = θ̂s2 when the choice of

τ2 for Model 2 equals the choice of τ2 for Model 1 multiplied by 2w1(1− w1). In the next section we show

that, for n = 3, the two estimators are not identical for any data-based choices of the two τ2.

4. A Brief Comparison of Models 1 and 2 for Three Strata

10



When there are three strata, θ̂s1 and θ̂s2 are quite distinct. To demonstrate this, we present a counterex-

ample to the claim that, when n = 3, one can always make a data-based choice of τ2
1 for Model 1 and of τ2

2

for Model 2 such that the resulting estimators are identical.

Counterexample Dataset We let (w1, w2, w3) = (1/2, 1/3, 1/6), all σ2
i = 1, and (Y1, Y2, Y3) =

(2.35, 0, 2.35).

Figure 1 graphs the resulting (η1, η2, η3) as a function of τ2 for each of the two estimators, and shows

us the reason we can not find τ2
1 and τ2

2 to make the estimators identical: the graph for η2 associated with

θ̂s2 lies strictly above that for η2 associated with θ̂s1; this results in θ̂s2 < θ̂s1 for all choices of τ2
1 and τ2

2 – see

Figure 2.

Although the graphs are convincing, some algebra shows conclusively what the graphs lead us to believe.

For the counterexample dataset, we find that for Model 1, µ̂ = 1
3Σ3

i=1Yi = Ȳ for all τ2 ∈ (0,∞); δ̂i =
τ2

τ2+1 (Yi − Ȳ ); and δ̂1 = δ̂3 = −δ̂2/2. Therefore, θ̂s1 = Ȳ for all τ2. For Model 2, on the other hand, we show

in Appendix 5 that the η2 associated with Y2 = 0 is greater than 1/3 for all τ2, and thus θ̂s2 < Ȳ for all τ2.

5. Details of Estimation and Performance Evaluation

We develop and present techniques for estimation and performance evaluation assuming h = 0 and

T = τ2T0 in the hierarchical model at (2). We base our performance evaluation on the MSE criterion

computed under the fixed effects sampling model Y |θ, µ, δ ∼ N(θ,Σ). In practice, the MSE generally

depends on θ and τ2; therefore, we need to use an estimated version. For the Medicaid example, we are

able to compare the estimated version with a simulated version based on the true θ because we have data

on patient age for the entire sampling frame.

The results of Section 2 lead to estimators for θ and θs, assuming known τ2, as follows:

θ̂ = HY and

θ̂s = WTHY, where

H = PΣ
Z + (I − PΣ

Z )
(

Σ−1(I − PΣ
Z ) +

1
τ2
T−1

0

)−1

Σ−1(I − PΣ
Z ).

We note that H depends on τ2 and on the particular specification for the hierarchical model at (2). We

propose to select τ2 to minimize the estimated MSE of θ̂s. The actual bias and variance are given by

biasa = WT (H − I)θ and

vara = WTHΣHTW. (17)

We estimate the bias as

ˆbias = WT (H − I)θ̂ = WT (H − I)HY, (18)
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and the MSE as m̂se = ˆbias
2

+ vara. Because m̂se depends upon τ2 in a complicated way, we use the

optimize() function within Version 2.3.0 of the statistical programming language R (2006) to minimize m̂se

as a function of τ2; in turn, we use the minimizing τ̂2 to evaluate m̂se.

Performance Evaluation

In section 6, we compare the performance of θ̂sa, θ̂
s
b , θ̂

s
1, and θ̂s2 in terms of their estimated MSEs, as

follows. For θ̂s1 and θ̂s2, we use m̂se as described above. For θ̂sa and θ̂sb , τ
2 does not depend upon the data.

Instead,

θ̂sa = WTY = limτ2→∞θ̂
s
i and θ̂sb = WTPΣ

Z Y = limτ2→0θ̂
s
i , (19)

for i = 1 or 2. For θ̂sa, limτ2→∞H is undefined, and thus we compute the bias and variance directly from (19)

as zero and WTΣW , respectively. For θ̂sb , limτ2→0H = PΣ
Z , and the variance can be computed as the limit

of (17). The estimation of bias is more complicated, because limτ2→0(H − I)H = 0, leading to ˆbias = 0, an

unreasonable estimate. We thus propose to estimate the bias of θ̂sb in two ways, using WT (H − I)HiY for

i = 1, 2, where H1 is the H of Model 1 and H2 is the H of Model 2. For H1, we select τ2 as for θ̂s1, and for

H2, we select τ2 as for θ̂s2.

A difficulty with our MSEs is that they are derived assuming that τ2 is known, when in fact we are

selecting it based on the data. This difficulty propogates into our estimated MSEs as well. For the Medicaid

data, however, because we know θ and θs, we can compare our estimated MSEs to simulated ’true’ MSEs.

Specifically, we generate 10,000 datasets with Y simulated according to the fixed effects sampling model

Y |θ, µ, δ ∼ N(θ,Σ). For each dataset, we estimate θ̂sa, θ̂
s
b , θ̂

s
1, and θ̂s2 as above. The ’true’ MSE is then

reported as the mean of the 10,000 squared errors, where one error is the estimate minus the true θs.

In usual practice, θ and θs will not be known. Thus, we would modify the above procedure, replacing θ

and θs by one of their estimated versions for the simulation. Additionally, whereas throughout this paper

we assume Σ is known, this is not the case in practice. The estimators of θs and MSE will be modified to

use a consistent estimator of Σ generated prior to the data reduction to Y,W,Σ; the simulations should be

modified accordingly, so that Σ is reestimated for each simulated dataset.

6. Application to Medicaid Data

Table 2 compares θ̂sa, θ̂
s
b , θ̂

s
1, and θ̂s2 as applied to the Medicaid data of Table 1. The column labeled

Approx MSE presents the estimated, i.e. approximated, version of MSE, whereas the column labeled

Simulated MSE presents the simulated ’true’ version, computed as described in the preceding section. The

rows present five different analyses, corresponding to different target summaries of plans within counties.

The adaptive nature of θ̂s1 and θ̂s2 is clearly evident in these results. For summaries 1,3, and 5, both

estimators tend towards θ̂sa due to heterogeneity of the plans. For summary 2, both tend towards θ̂sb ,

reflecting approximate homogeneity. For summary 4, all four estimators are nearly equal by a coincidence,
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in which precision weighting is effectively the same as weighting based on plan size. By adapting to θ̂sa or θ̂sb
according to estimated MSE, θ̂s1 and θ̂s2 avoid the large MSEs seen with θ̂sa for summary 2 and with θ̂sb for

summaries 1,3, and 5.

Observe that the simulated MSEs are always larger than the estimated MSEs for θ̂s1 and θ̂s2; extra

error appears when we account for the data-based selection of τ2. The discrepancy between estimated

and simulated MSEs for θ̂sb results from using estimated versus ’true’ values of θ in the computations. As

expected, estimated and simulated MSEs are approximately equal for θ̂a.

Perhaps most interesting is a direct comparison of θ̂s1 and θ̂s2. These estimators are identical for the

two-plan summaries of Duval County, consistent with our results from section 3. For summary 4, the two

estimators are nearly identical (differing only in simulated MSEs) because θ̂sa and θ̂sb are so close together.

Basing a choice between θ̂s1 and θ̂s2 on estimated rather than simulated MSE would lead to the wrong selection

for summaries 1 and 5, the only two summaries for which this choice could matter. Overall, however, we see

that, when applied to the Medicaid data, θ̂s1 and θ̂s2 are essentially the same for all practical purposes.

7. Discussion

We have developed and compared adaptive estimators of a weighted average of stratum-specific parame-

ters based on varying specificiations of a general hierarchical model. The estimators are especially useful

when prior knowledge indicates that the parameters might be relatively homogeneous. Two estimators that

we have studied in depth correspond to using either the DerSimonian and Laird (1986) model (Model 1)

for the parameters or the novel model briefly touched on by Brumback and Brumback (2005) and Ghosh

and Maiti (1998) (Model 2). In our investigation, we have uncovered the importance that the constraints

satisfied by posterior means have for interpretability of the direct parameters of hierarchical models. We

have also discovered that Model 1 and Model 2 lead to distinctly different estimators of θs when the number

of strata exceeds two. However, these two estimators performed very similarly when applied to the Medicaid

data. Further research is warranted to ascertain whether these two estimators perform similarly in general,

or only under certain circumstances.

In this paper, we have considered only the case of known wi. In several related applications, the wi

are unknown and need to be estimated from the sample. Examples include adjustment for nonresponse

bias, missing data, or confounding. Further research could study the effects of applying our estimators with

estimated wi. A related topic is that of estimating summary odds ratios under heterogeneity. Greenland

(1982) discusses relative advantages of the Miettinen (1972) and Mantel-Haenszel (1959) summary odds

ratio estimators when one cannot assume homogeneity; these summary measures can each be expressed as

a weighted sum of stratum-specific odds ratios, with data dependent weights.

We have only briefly discussed estimation of θp, but it would be worthwhile to use general hierarchical

models to extend the early ideas of Pfeffermann and Nathan (1981). A comparison of these extensions with

13



Summary Estimator Estimate Approx MSE Simulated MSE
1. Duval θs (truth) 16.0634 NA NA

θ̂sa 16.0453 0.2931 0.2909
θ̂sb 11.8086 16.5058, 17.2316∗ 18.7206
θ̂s1 15.8641 0.2688 0.3542
θ̂s2 15.9527 0.2763 0.3168

2. Duval plans 1,2 θs (truth) 17.2049 NA NA
θ̂sa 17.2420 0.7702 0.7690
θ̂sb 16.8354 0.4043,0.4043 0.4445
θ̂s1 16.8354 0.4043 0.5045
θ̂s2 16.8354 0.4043 0.5045

3. Duval plans 4,6 θs (truth) 13.5983 NA NA
θ̂sa 13.5524 0.3719 0.3714
θ̂sb 10.4387 9.1705, 9.1705 11.4143
θ̂s1 13.4544 0.3626 0.3997
θ̂s2 13.4544 0.3626 0.3997

4. Duval plans 1,2,10 θs (truth) 16.3354 NA NA
θ̂sa 16.3203 0.3568 0.3592
θ̂sb 16.3217 0.2512, 0.2512 0.3889
θ̂s1 16.3217 0.2512 0.3791
θ̂s2 16.3217 0.2512 0.3821

5. Broward θs (truth) 15.7181 NA NA
θ̂sa 16.0856 0.0776 0.0763
θ̂sb 12.0907 15.7914, 15.7534 13.4604
θ̂s1 16.0613 0.0770 0.0790
θ̂s2 16.0565 0.0767 0.0796

Table 2: Results of Applying the Methods to the Medicaid Data. *Approximate MSEs for θ̂s2 were computed
with bias estimated first replacing each θi with θ̂1,i and second with θ̂2,i.

the latter work of Pfeffermann et al. (1998) and others currently active in multilevel modeling of complex

survey data would be quite interesting.
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Appendix

Appendix 1.

Here we verify (3). Let β = (µT , δT )T , X = [Z|In], In be the n × n identity matrix, C be the block

diagonal matrix with first block the p × p matrix of zeroes and second block equal to T−1, and m be the

vector (0Tp , h
T )T , with 0p as the vector of p zeroes. Suppose β has prior given by (2), and that Y given β is
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MVN with mean Xβ and variance Σ. Then minus two times the log of the posterior distribution of β given

Y equals (up to a constant)

(Y −Xβ)TΣ−1(Y −Xβ) + (β −m)TC(β −m), (20)

which in turn equals (up to a constant)

βT (XTΣ−1X + C)β − 2βT (XTΣ−1Y + Cm).

Assuming that (XTΣ−1X+C) is invertible (this implies mild restrictions on Z, T , and Σ), we can complete

the square with

(XTΣ−1Y + Cm)T (XTΣ−1X + C)−1(XTΣ−1Y + Cm),

so that minus two times the log of the posterior equals (up to a constant)

(β − b)TV −1(β − b),

with

b = (XTΣ−1X + C)−1(XTΣ−1Y + Cm) and

V = (XTΣ−1X + C)−1.

Thus the posterior of β = (µT , δT )T is multivariate normal with mean b solving (3).

Appendix 2.

Here we show that the posterior mean of δ given Y is the solution to (6). By the properties of the

multivariate normal distribution, it must also equal the δ̂ of (3); therefore, we know that it solves (5).

Minus two times the log of the joint distribution of Y, δ, µ is (up to a constant)

(Y − Zµ− δ)TΣ−1(Y − Zµ− δ) + (δ − h)TT−1(δ − h).

Recall that PΣ
Z = Z(ZTΣ−1Z)−1ZTΣ−1, and note that PΣ

Z Z = Z. Write

(Y − Zµ− δ)TΣ−1(Y − Zµ− δ) =(
[PΣ
Z (Y − δ)− PΣ

Z Zµ] + [(I − PΣ
Z )(Y − δ)]

)T
Σ−1

(
[PΣ
Z (Y − δ)− PΣ

Z Zµ] + [(I − PΣ
Z )(Y − δ)]

)
.

Expand the quadratic form according to the terms in square brackets, and note that the cross term is zero

since (I − PΣ
Z )TΣ−1PΣ

Z = 0. So this part of the log is

(PΣ
Z Zµ− PΣ

Z (Y − δ))TΣ−1(PΣ
Z Zµ− PΣ

Z (Y − δ)) + ((I − PΣ
Z )(Y − δ))TΣ−1((I − PΣ

Z )(Y − δ)).

Only the first term has µ, and if we examine it and use the fact that PΣ
Z Z = Z again, we have

(PΣ
Z Zµ− PΣ

Z (Y − δ))TΣ−1(PΣ
Z Zµ− PΣ

Z (Y − δ)) = (µ− µ̂δ)T (ZTΣ−1Z)(µ− µ̂δ),
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where µ̂δ = (ZTΣ−1Z)−1ZTΣ−1(Y − δ). Thus we have that the conditional distribution of µ|Y, δ is

µ|Y, δ ∼ N(µ̂δ, (ZTΣ−1Z)−1).

In this form, we can now integrate out µ from the joint distribution to get the marginal distribution of Y, δ.

This has minus two times the log equal to (up to a constant)

((I − PΣ
Z )(Y − δ))TΣ−1((I − PΣ

Z )(Y − δ)) + (δ − h)TT−1(δ − h).

Define A = (I − PΣ
Z )TΣ−1(I − PΣ

Z ). Minus two times the log is then (up to a constant)

(δ − Y )TA(δ − Y ) + (δ − h)TT−1(δ − h).

Factor this as

(δ − δ̂)T (A+ T−1)(δ − δ̂) + Y TAY + hTT−1h− δ̂T (A+ T−1)δ̂,

where

δ̂ = (A+ T−1)−1(AY + T−1h),

as in (6). Thus, as we wished to show, the conditional distribution of δ given Y is

δ|Y ∼ N(δ̂, (A+ T−1)−1).

Appendix 3.

From the identity

(Y − θ)TΣ−1(Y − θ) + (θ − Zµ− h)TT−1(θ − Zµ− h)

= θT (Σ−1 + T−1)θ − 2θT
(
Σ−1Y + T−1(Zµ+ h)

)
+ Y TΣ−1Y + (Zµ+ h)TT−1(Zµ+ h),

it follows that

E(θ|Y, µ) = T (Σ + T )−1Y + Σ(Σ + T )−1(Zµ+ h).

Noting that Y |µ ∼ N(Zµ+ h,Σ + T ), from the identity

(Y−Zµ−h)T (Σ+T )−1(Y−Zµ−h) = µT
(
ZT (Σ + T )−1Z

)
µ−2µTZT (Σ+T )−1(Y−h)+(Y−h)T (Σ+T )−1(Y−h),

it follows that

E(µ|Y ) =
(
ZT (Σ + T )−1Z

)−1
ZT (Σ + T )−1(Y − h).

Hence

E(θ|Y ) = (I −B)Y +BPΣ+T
Z (Y − h) +Bh,

where B = Σ(Σ + T )−1. The equation at (9) follows.

Appendix 4.
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Here we show that if at least one wi is distinct from the rest, and if we condition on µ, a “supermodel”

that encompasses Model 1 and Model 2 is identifiable.

Specifically, under either Model 1 or 2 we consider the density of Y |µ, τ2, and we introduce a new

parameter ψ that equals 1 or 2 for Model 1 or 2. This leads to a supermodel, indexed by parameters (ψ, µ, τ2),

such that for ψ equal to either 1 or 2, the distribution Pψ,µ,τ2 of Y1, . . . , Yn is that of n independent normal

random variables with mean µ; for ψ = 1 the variances are σ2
i +τ

2, but for ψ = 2, the variances are σ2
i +τ

2/wi.

To show that the supermodel is identifiable, we suppose it is not and derive a contradiction. We suppose

that there exists (ψ1, µ1, τ
2
1 ) unequal to (ψ2, µ2, τ

2
2 ) such that Pψ1,µ1,τ2

1
= Pψ2,µ2,τ2

2
. If ψ1 = ψ2, then (µ1, τ

2
1 )

must equal (µ2, τ
2
2 ) because the mean and variance parameters of the corresponding multivariate normal

distribution are identifiable. It thus suffices to consider the case of ψ1 = 1 and ψ2 = 2. Nonidentifiability

implies that µ1 = µ2, because the marginal normal mean of Y1 when ψ = 1 must be the same as that when

ψ = 2. We furthermore learn that σ2
i + τ2

1 must equal σ2
i + τ2

2 /wi for i = 1, . . . , n, because the marginal

normal standard deviations of the Yi must also be the same for ψ = 1 as for ψ = 2. Consequently,

τ2
1 = τ2

2 /wi for all i.

Because T is positive definite, τ2
1 and τ2

2 must be nonzero. Thus, unless all wi are equal, we have a

contradiction.

Appendix 5.

For Model 2 and the counterexample dataset,

η2 =
1

3τ2+1
1

2τ2+1 + 1
3τ2+1 + 1

6τ2+1

.

We need to show that η2 > 1/3 for all τ2 ∈ (0,∞). Multiplying numerator and demoninator by 3τ2 + 1, it

suffices to show that
3τ2 + 1
2τ2 + 1

+
3τ2 + 1
6τ2 + 1

= 1 +
τ2

2τ2 + 1
+ 1− 3τ2

6τ2 + 1
< 2.

Assuming τ2 ∈ (0,∞), it is equivalent to show that

1
2τ2 + 1

<
3

6τ2 + 1
,

which is true because 6τ2 + 1 < 6τ2 + 3.
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Figure 1: The ηi for Models 1 and 2 for the n = 3 Example Dataset of Section 4, as a function of τ2.
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Figure 2: Estimated θ̂s1 and θ̂s2 as a function of τ2 for the n = 3 Example Dataset of Section 4.
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