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STARTING WITH SIMPLE MODELS 
 

In the 20th century our 
ability to describe and 
categorize biological 
phenomena developed 
from the organismal level 
down to the gene level.  
The 21st century will see 
researchers working back 
up that scale, composing 
genetic information to 
eventually build up a 
“first-principles” 
understanding of 
physiology all the way to 
the complex organism. 
Figure 2 shows this 
challenge schematically,  

 
 
while also pointing out which 21st-century advances will rely on experimental biology, 
and which ones will rely on computational biology (with its attendant mathematical 
sciences and information sciences research).  As a first step, the huge amount of 
information coming from recent advances in genomics (e.g., microarray data and genetic 
engineering experiments) represents an opportunity to connect genotype and phenotype1 
beyond a purely descriptive level. 
 
Workshop speaker James Weiss of UCLA outlined a strategy to go in that direction by 
first considering a simple model that might relate the simple gene to the complex 
organism.  His strategy begins by asking what are the most generic features of a 
particular physiological process, and one then builds a simple model that could, in 
principle, relate the genomic input to those features.  Through analysis, one identifies 
emergent properties implicit in the model and the global parameters that identify the 
model’s features.  Physiological details are added later, as needed, to test experimental 
predictions.  This strategy is counter to a more traditional approach in which all known 
biological components would be included in the model.  Weiss’s strategy is necessary at 
this point in the field’s development because we do not know all the components and 
their functions, nor would we have the computational ability to model everything at once 
even if that information were available. 
 
This principle of searching for a simple model was apparent throughout Weiss’s 
presentation, which showed how a combination of theoretical and experimental biology 

                                                 
1 A genotype is a description or listing of a cell or organism’s genetic information, while the cell or 
organism’s phenotype is a description of its resulting features and/or functions. 

Figure 2:  Direction of Scientific Investigation 
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could be used to study a complex problem. He described research that modeled the 
causes of ventricular fibrillation.  The first attempts at controlling fibrillation focused on 
controlling the triggering event, an initial phase of ventricular irregularity.  However, it 
was found that a drug therapy that controlled this event did not result in a decrease in 
mortality from ventricular fibrillations.  Thus, there was a need to understand better the 
chain of causality behind ventricular fibrillation. 
 
Using the basic premise that cardiac tissue is an excitable medium, Weiss proposed a 
wave model.  In this model, fibrillation is the result of a breaking wave, and the onset of 
fibrillation occurs when the wave first breaks; it escalates into full fibrillation as the wave 
oscillation increases. The cause of the wave breakage was thought to be connected to the 
occurrence of a premature beat.  If the wave could not recover from this premature 
impulse (recovery is called “electric restitution”), oscillation would develop.  This basic 
concept was modeled through the simple equation 
 

wavelength  = APD x (conduction velocity), 
 

where APD is the action potential duration.  Supercomputer simulations of wave patterns 
in two- and three-dimensional cardiac tissue, based on this simple equation, showed that 
the wave patterns undergo a qualitative shift in their characteristics (being either spiral or 
scroll waves) depending on whether the parameter APD is less than or greater than unity.  
When APD > 1, the impulses come too rapidly for the wave to recover (i.e., for electric 
restitution to take place), and fibrillation results.  Thus the simulations suggested that 
holding APD below unity might result in tissue that can recover rather than fall into 
fibrillation mode.  Because drugs are available that can lower APD, it was possible to 
verify the simulated results in real tissue (a pig ventricle).  This suggests the possibility of 
an important drug intervention that was not of obvious importance before Weiss carried 
out his simulations.  See Garfinkel et al. (2000) for more details. 
 
 
 
The graph of DNA synthesis as a function of integrated ERK2 activity shown in Figure 1, 
above, is another example of how a simple model can sometimes capture the effective 
behavior of a complex process.  The complex process here is one case of how a 
molecular regulating network governs cell functions.  In general, protein signaling causes 
interconnected, complicated networks to form (see, e.g., Hanahan and Weinberg 2000, or 
Figure 3 below). The protein signaling pathways include membrane receptors (sensors), 
intracellular signal cascades (actuators), and cell functional responses (outputs), and one 
obvious approach to modeling this network would view it as consisting of three parts: 
 
 
 
 
 
 

Cues Intracellu
lar 

Cell Function 
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Lauffenberger of MIT adopted this approach to model the quantitative dynamics of the 
ERK2 signal as it responds to an external cue (fibronectin, a protein involved in many 
important cellular processes) and helps lead to the cell function of synthesizing DNA.  
After introduction of the external cue, ERK2 activity increases and peaks at 15 minutes, 
and then it drops down. Amazingly, the DNA synthesis level appears to be linearly 
dependent on the integrated ERK2 activity, as shown in Figure 1.  This striking result 
suggests that there is no need, at this level, for modeling the network of intracellular 
signals in detail; that instead they can be replaced by the de facto linear relationship. 
 

However, simple 
models are not 
always sufficient, 
and in the case of 
multiple external 
cuese.g., insulin’s 
synergy with 
fibronectin (Fn) in 
the regulation of 
DNA 
synthesisthe 
insulin/Fn cue-
response synergy is 
not explained by an 
integrated ERK2 
signal.  The more 
complex behavior in 
this case is shown in  
 

 
 
Figure 3.  Multi-dimensional signal analysis is likely required for this scenario.  More 
detail about this research may be found in Asthagiri et al. (2000), or the web site 
http://web.mit.edu/cbe/dallab/Research.html.    
 
The reason we seek the simplest models with the right functionality is, of course, that 
science needs to understand the biological process (ultimately to influence it in a positive 
way) in terms that are simple enough to develop a conceptual understanding, even an 
intuition, about the processes.  Thus, there is a balance between simplicity and capturing 
the essentials of the underlying process.  The definition of “essential” will vary according 
to the investigator’s needs. 

Figure 3:  Insulin Response 
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Other workshop presentations, by Garrett Odell (University of Washington) and John 
Tyson (Virginia Polytechnic Institute and State University), also delved into the modeling 
of cellular networks.  Tyson investigated the cell cycle, the sequence of events in which a 
growing cell replicates its components.  The network (molecular interactions) of the cell 
cycle is very complex (see, e.g., Kohn, 1999), and is shown in  Figure 4.  Using a 
compartment model approach, Tyson models the cell cycle with a system of differential 
equations that represent the molecular interactions.  His goal is to produce a model that is 
tailored to the properties of yeast:  that is, having parameter values for which the output 
of the model agrees with representative experimental data for yeast.   
 
The network diagram shown in Figure 4 leads to a system of differential equations with 
more than 50 rate constants.  This mathematical model was fit to data and then tested by 
looking at its predictions in approximately 100 mutant strains of yeast.  The agreement 
was very good. 
 
Figure 5 shows the modeling process that Tyson went through.  Neither intuition nor 
direct experimental data could explain some aspects of the yeast cell’s physiology, but 
there was enough understanding to hypothesize a molecular signaling network.  That 
network could be described by a system of differential equations, and the output of that 
system (seen through tools of dynamical system theory) sheds light on the physiology of 
the cells.  Finally, that proposed physiology was verified experimentally. 
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Figure 4:  Network Diagram of the Yeast Cell Cycle 
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Last Step of Computational Molecular Biology
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To construct his very complex model, Tyson did the work in segments.   The model was 
split into simple pieces, and each piece was provisionally fit to data.  Then the pieces 
were joined together, and the pieces were refit as a complete unit.  As was the case with 
the other modeling efforts described in this summary, Tyson’s process began with simple 
models that didn’t necessarily emulate every known aspect of cellular physiology or 
biochemistry, and additional complexity was added only as needed to produce output that 
captures important features observed experimentally.   
 
Garrett Odell used a similar approach to uncover what cellular mechanism controls the 
formation of stripes in anthropoids (see Nagy 1998 and von Dassow et al. 2000).  To 
model the cell-signaling network, Odell needed 33 differential equations with 48 free 
parameters.  The model was fit using nonlinear optimization with an objective function 
that was “crafted” so that, at its minimum, the desired genetic pattern would be observed. 
 
 
To model the network, Odell’s group needed 33 differential equations with 48 free 
parameters.  The following illustration shows the connection between the network 
diagram and the mathematical model, where the model parameters nEnhh and kEnhh need to 
be estimated.  A parametric form is specified for the rate of exchange between to of the 
components of a network diagram such as that in Figure 4, and the resulting model 
equations, the solutions to the differential equations, are then estimated.  The model was 
fit using nonlinear optimization with an objective function that was “crafted” so that, at 
its minimum, the desired genetic pattern would be observed. 
 

Figure 5:  The Modeling Process 
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A quote that resurfaced at times 
throughout the conference was the 
following one attributed to 
Stanislaus Ulam : “Give me 15 
parameters and I can make an 
elephant; give me 16 and I can 
make it dance”.   Odell noted that he 
“cannot make four lousy stripes 
with 48 parameters”his first 
model did not work, and it was 
found later that the network it was 
modeling was not correct. (The 
evidence in the literature was 
ambiguous about the exact details of 
the network.)  

 
 
In fact, this failure demonstrated that the network, as originally conceived, lacked some 
necessary connections.   The process of representing the network with a differential 
equations model made the absence of these connections more apparent because the 
erroneous set of equations did not have the mathematical capacity to create the stripes 
that are known to occur in nature.  After recognizing the missing network links and 
representing them in the differential equations, the resulting set of equations not only 
produced the proper pattern, but the choice of parameters also turned out to be extremely 
robust.  That is, the same pattern of stripes occurs over a wide range of parameter values, 
and it was no longer necessary to use optimization to tune the parameter set.  In what was 
now a 50-dimensional parameter space, choosing the parameters at random (within 
reasonable bounds) still gave a 1/200 chance of achieving the desired pattern.  Further 
study of the robustness confirmed that the function represented by the differential 
equations, and hence the molecular network implied, was extremely stable.  Compare this 
to a radio wiring-diagram, where a change in one connection will render the network 
inoperable.  Here, the robustness of the network is similar to replacing a blown capacitor 
with whatever is handy, and still having an operable radio.   
 
The search for a simple model, indeed for any model, is the search for a basic underlying 
structure that will help us to understand the mechanism of the biological process, and – if 
we are successful - to lead us to new science.   The solutions to the yeast differential 
equations led to understanding a bifurcation phenomenon, and the model also predicts an 
observed steady state oscillation.  So the mathematical model not only shed new 
understanding on a previously observed phenomenon, it opened the door to seeing 
behavior that had not been explained by biology. 
 
 
 
 
 

Figure 6:  Network Parameters (Odell) 


