
 17

 

FROM THE COMPARTMENT TO THE FLUID 
 
The mathematical modeling presented in the previous two sections was mainly based on 
compartment models, models that lead to differential equations with unknown rate 
parameters.  Another approach, taken by two other workshop presenters, is to investigate 
the fluid dynamics of the underlying biological system and use those principles to 
enhance our biological understanding.   
 
George Oster of the University of California at Berkeley started his talk by showing a 
computer-generated movie representative of myxobacteria movement and then presenting 
a mathematical model that describes the collective behavior, the “ripple phase”.  

 
The ripple phase has two patterns: 
bulls-eye and spiral (see Figure 12).  
Ripple waves have the ability to 
appear to pass through one another, 
and they can occur without any 
matter actually moving (see Sager 
and Kaiser, 1993).   
 
Knowing that myxobacteria move 
with a combination of two motility  
mechanisms, labeled A and S and 
controlled by different physiology, 
Oster sought to combine 
mathematical models of these 
mechanisms plus a model of a 
communication system into a 

dynamic model that could produce the ripple phase.  The resulting model succeeded in 
emulating important characteristics of the motion of myxobacteria, such as how the 
bacteria in crests move with the wave while bacteria in troughs move against the wave. 
The model also captures the ability of ripple waves to move through one another and to 
operate without actual transfer of mass.  In addition, when waves collide certain 
myxobacterial cells  continue moving forward and other ones reverse, in accordance with 
experimental observations. 
 
The model also suggests that the ripple phase may be a mechanism for optimal fruiting 
body products but that it is not necessary for fruiting body formats, and that the rippling 
phase is not robustit exists only under certain conditions.  This last prediction might 
lead to an experimental method that can be used to probe the intercellular communication 
system. 
 
In another application of fluid dynamics, Charles Peskin of New York University 
described a mathematical model for the heart that considers the muscle tissue to be a 
time-dependent elastic material, which can be modeled using fluid dynamics.  The 

Figure 12:  Patterns in the Ripple Phase  
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geometry of his model builds on work in the 1950s by Carolyn Thomas, which described 
the fiber architecture of the heart as a system of spiraling muscle fibers (see Figure 13). 
 
 
 

< insert Figure 13 here > 
 
 
 
 
 
 
 
 
 
By considering the heart as a composite material of fiber and fluid, Peskin developed 
equations of a viscous incompressible fluid to describe the force applied by the fibers to 
the fluid.  Figure 14 illustrates the relationship between pressure and volume, and how it 
changes as the valves open and close, while Figure 15 shows the force vectors, 
illustrating the forces on the muscle fiber of the heart. 
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Figure 14:  Pressure/Volume Relationship in the Heart (Peskin) 
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Using the following definitions, 
 
 
 
 
 
 
 
 
 
 
Peskin derived the following differential equations: 
 
1. The fluid equation, in Cartesian coordinates, which describes the force of the fibers 

on the fluid 
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2.  The fiber equations, which describe the stress on the fibers 
 

Figure 15:  Illustration of forces on heart muscle fibers  

q,r,s = material parameters (s varies along the fiber) 
t= time, 

x=X(q,r,s,t), position 
t=t(q,r,s,t), force 

T=T(q,r,s,t), stress, 
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3.  The interaction equation, which ties them together 
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Note that the equations are expressed using the Dirac delta function, an alternative to 
computing a Jacobean.  Use of the delta functions results in an algorithm that is 
numerically more stable than one that relies on a Jacobean. 
 
Peskin also described a numerical method for solving the equations, using a second-order 
immersed boundary method derived by M-C Lai, which is based on an extension of the 
Runge-Kutta method.  This method can also be used in traditional fluid mechanics 
problems. 
 
The model output (Figures 16-17) compares admirably with MRI scans.  Perhaps most 
impressive, the model captures the swirling movement of blood within the ventricles, a 
phenomenon of physiological importance that had not emerged in simpler models. This 
swirling explains why less force is required to exit the chamber than would otherwise be 
predicted, and it also eliminates leakage in valves from back pressure.  However, some 
improvements are still needed in the model, including refinements of the representation 
of the up-down valve motion, getting a larger valve opening, and decreasing the 
movement of the base of the heart. 
 
 
 
 
 
 
 

Peskin figures go here. 
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It is interesting to note that the Peskin work reflects two of the major themes common to 
other workshop talks.  First, the evolution of his heart model over the years has been  
guided by a clear understanding of what physiological features must be captured and 
what mathematical methods might be suitable to do so, rather than by, say, simply 
increasing model resolution.  For instance, his previous model, although doing an 
adequate job of reproducing some heart actions, displayed an irregular pattern of blood 
flow and leakage in the valves that was significantly different from that in a functioning 
heart.  His current version has become more complex in a way that can capture this 
important phenomenology.  Second, the Peskin model is an illustration of how a 
mathematical representation can suggest insights (subject to experimental validation) that 
would not be apparent from current experimental data.  The Peskin heart model is an 
approximate surrogate for a beating heart, a surrogate that can be manipulated and 
inspected in ways that a living heart cannot.  


