STA6934. PROBLEM 1.18

VLADIMIR BUGERA

Consider n observations $x_1, ..., x_n$ from \mathcal{B} where both k and p are unknown.

(a) Show that the maximum likelihood estimator of k, \hat{k} , satisfies

(1)
$$(\hat{k}(1-\hat{p}))^n \ge \prod_{i=1}^n (\hat{k} - x_i)$$

and

(2)
$$((\hat{k}+1)(1-\hat{p}))^n < \prod_{i=1}^n (\hat{k}+1-x_i),$$

where \hat{p} is the maximum likelihood estimator of p. Density function of Binomial Distribution $\mathcal{B}(n,p)(0 \ge p \ge 1)$ is

(3)
$$f(x|p) = \binom{k}{x} p^x (1-p)^{(k-x)}.$$

The likelihood function for the observations $x_1, ..., x_n$ is

(4)
$$L(k,p) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} {k \choose x_i} p^{x_i} (1-p)^{(k-x_i)}$$

For maximum (\hat{k}, \hat{p}) of L(k, p) the following should be valid:

(5)
$$L(\hat{k} - 1, \hat{p}) \le L(\hat{k}, \hat{p}) \ge L(\hat{k} + 1, \hat{p})$$

Taking into account that

$$\begin{split} L(\hat{k}-1,\hat{p}) &= \prod_{i=1}^n \frac{(\hat{k}-1)!}{x_i!(\hat{k}-1-x_i)!} \hat{p}^{x_i} (1-\hat{p})^{(\hat{k}-1-x_i)}, \\ L(\hat{k},\hat{p}) &= \prod_{i=1}^n \frac{\hat{k}!}{x_i!(\hat{k}-x_i)!} \hat{p}^{x_i} (1-\hat{p})^{(\hat{k}-x_i)} \\ &= \prod_{i=1}^n \frac{\hat{k}}{(\hat{k}-x_i)} (1-\hat{p}) \prod_{i=1}^n \frac{(\hat{k}-1)!}{x_i!(\hat{k}-1-x_i)!} \hat{p}^{x_i} (1-\hat{p})^{(\hat{k}-1-x_i)}, \\ L(\hat{k},\hat{p}) &= \prod_{i=1}^n \frac{(\hat{k}+1)!}{x_i!(\hat{k}+1-x_i)!} \hat{p}^{x_i} (1-\hat{p})^{(\hat{k}+1-x_i)} = \\ &= \prod_{i=1}^n \frac{(\hat{k}+1)}{(\hat{k}+1-x_i)} (1-\hat{p}) \prod_{i=1}^n \frac{(\hat{k})!}{x_i!(\hat{k}-x_i)!} \hat{p}^{x_i} (1-\hat{p})^{(\hat{k}-x_i)}, \end{split}$$

we come to:

$$\begin{array}{rcl} 1 & \leq & \prod_{i=1}^n \frac{\hat{k}}{(\hat{k}-x_i)} (1-\hat{p}), \\ \text{and} & & & \\ 1 & \geq & \prod_{i=1}^n \frac{(\hat{k}+1)}{(\hat{k}+1-x_i)} (1-\hat{p}). \end{array}$$

After transformation we get:

and
$$(\hat{k}(1-\hat{p}))^n \geq \prod_{i=1}^n (\hat{k} - x_i),$$

$$((\hat{k}+1)(1-\hat{p}))^n \leq \prod_{i=1}^n (\hat{k}+1-x_i).$$

Without losses of generality we can assume that the last inequality validates as strict. The equalities (1) and (2) are proved.

We will also need an expression connecting \hat{p} and \hat{k} . To find it we solve the following equation:

(6)
$$\frac{\partial \ln L(k,p)}{\partial p}_{p=\hat{p},k=\hat{k}} = 0;$$

(7)
$$\frac{\partial \left(\ln \left(\prod_{i=1}^{n} \left(\frac{\hat{k}!}{x_{i}!(\hat{k}-x_{i})!}\right)\right) + \ln \left(\prod_{i=1}^{n} \hat{p}^{x_{i}}(1-\hat{p})^{(\hat{k}-x_{i})}\right)\right)}{\partial \hat{p}} = 0;$$

(8)
$$\sum_{i=1}^{n} \left(\frac{x_i}{\hat{p}} - \frac{(\hat{k} - x_i)}{1 - \hat{p}} \right) = 0;$$

(9)
$$\frac{\sum_{i=1}^{n} x_i}{\hat{p}(1-\hat{p})} - \frac{n\hat{k}}{1-\hat{p}} = 0;$$

$$\hat{p} = \frac{\sum_{i=1}^{n} x_i}{\hat{k}n};$$

(b) If the sample is 16, 18, 22, 25, 27, show that $\hat{k}=99$. Compute logarithms for both sides of equalities (1) and (2):

	- ()							
k	97	98	99	100	101	190		
$\ln\left((k(1-\hat{p}))^n\right)$								
$ \ln\left(\prod_{i=1}^{n}(k-x_i)\right) $								
$\ln (((k+1)(1-\hat{p}))^n)$								
$\ln\left(\prod_{i=1}^{n}(k+1-x_i)\right)$	21.673	21.738	21.802	21.866	21.928	25.660		

Assuming that the likelihood function is unimodal we find $\hat{k} = 99$

(c) If the sample is 16, 18, 22, 25, 28, show that $\hat{k}=190$. Compute logarithms for both sides of equalities (1) and (2):

1 0	1 ()							
k	99	188	189	190	191	192		
$\ln\left((k(1-\hat{p}))^n\right)$								
$\ln\left(\prod_{i=1}^{n}(k-x_i)\right)$								
$\ln\left(((k+1)(1-\hat{p}))^n\right)$								
$\ln\left(\prod_{i=1}^{n}(k+1-x_i)\right)$	21.788	25.594	25.624	25.654	25.683	25.713		

Assuming that the likelihood function is unimodal we find $\hat{k} = 190$

Conclusion: Maximum Likelihood Estimator is not robust in the presence of errors. The example demonstrates that a small deviation in data can increase an estimation more than two times. For more details the reader can be addressed to the following article:

Olkin, I., Petkau, A.J. and Zidek, J.V. (1981) A comparison of n estimators for the binomial distribution. J. Amer. Statist. Assoc., 76, 637-642