Problem 1.27:Suppose that $X \sim f(x|\theta)$, with prior distribution $\pi(\theta)$, and interest is in the estimation of the parameter $h(\theta)$.

a) Using the loss function $L(\delta,h(\theta))$, show that the estimator that minimizes the Bayes risk

 $\iint L(\delta,h(\theta))f(x|\theta)\pi(\theta)dxd\theta \text{ is given by the estimator that minimizes (for each x)}$

 $\int L(\delta,h(\theta))\pi(\theta|x)d\theta$.

Solution: We know that $f(x|\theta)\pi(\theta) = \pi(\theta|x)M(x)$. Substituting this in the formula for the Bayes risk we get

 $\iint L(\delta,h(\theta))f(x|\theta)\pi(\theta)dxd\theta = \iint L(\delta,h(\theta))\pi(\theta|x)M(x)dxd\theta = \iint L(\delta,h(\theta))\pi(\theta|x)d\theta)M(x)dx.$ Thus δ minimizing the Bayes risk is given by the estimator that ,for each x, minimizes the inner integral,i.e. δ minimizing $\int L(\delta,h(\theta))\pi(\theta|x)d\theta$.

b)For $L(\delta,h(\theta))=||h(\theta)-\delta||^2$, show that the Bayes estimator of $h(\theta)$ is $\delta^{\pi}(x)=E^{\pi}[h(\theta)|x]$.

Solution: According to part a), the Bayes estimator of $h(\theta)$ is the estimator δ that for each x minimizes $\int L(\delta,h(\theta)) \pi(\theta|x)d\theta = \int ||h(\theta)-\delta(x)||^2 \pi(\theta|x)d\theta = E[||h(\theta)-\delta(x)||^2|x]$ and it is known (by a result that will be proven at the end), that the estimator minimizing that expectation is $\delta^{\pi}(x)=E^{\pi}[h(\theta)|x]$.

c) For $L(\delta,h(\theta))=|h(\theta)-\delta|$, show that the Bayes estimator of $h(\theta)$ is the median of the posterior distribution.

Solution: According to part a) again,the Bayes estimator of $h(\theta)$ is the estimator δ that for each x minimizes $\int L(\delta,h(\theta)) \pi(\theta|x)d\theta = \int |h(\theta)-\delta(x)|\pi(\theta|x)d\theta = E[|h(\theta)-\delta(x)||x]$. But from a result that will be proven below,this expectation is minimized by the median of the posterior distribution (of $h(\theta)$).

Results:

Note:for simplicity, we will provide the proof in the unidimensional case(for the multidimensional case, the result follows from the definition of the norm and the linearity of expectation).

1)Let Y be a random variable and M a constant. The value that minimizes $E[(Y-M)^2]$ is M=E[Y].

Proof: $E[(Y-M)^2]=E[(Y-E(Y)+E(Y)-M)^2]=E[(Y-E(Y))^2]+2E[(Y-E(Y))(E(Y)-M)]+E[(E(Y)-M)^2].$

The middle term is 0 since E(Y)-M is a constant and E[(Y-E(Y))]=0.

The other two terms are positive and the expression is minimized when the last term is 0 i.e. for M=E(Y).

2)Let Y be a real valued random variable with a median M and $E|Y| < \infty$.

Then $E|Y-M|=\inf E|Y-a|$.

a€R

Proof:Note that $E|Y-a| \le E(|Y|+|a|) \le \infty$ and thus it makes sense to talk about the right hand

```
side.
```

Suppose first that a>M. |Y-a|-|Y-M|=M-a if M < a <= YM+a-2Y if M<Y<aa-M if $Y \le M \le a$.

 $a \\ Thus, E[|Y-a|-|Y-M|] = (M-a)P(Y \ge a) + \int_{M} (M+a-2y) \ dF(y) + (a-M)P(Y \le M) \ge (M-a)P(Y \ge a)$

 $+ (M-a) \,) \! \int_M dF(y) \, + (a-M)P(Y \leq M) = (M-a) \, P(Y \geq M) \, + \, (a-M)P(Y \leq M) = (a-M)[2P(Y \leq M) - (M-a)] + \, (M-a) \, P(Y \leq M) = (M-a)[2P(Y \leq M) - (M-a)] + \, (M-a)[2P(Y \leq M)] + \, (M-a)[2P(Y \leq M)$ 1] \geq (a-M)(2*1/2-1)=0.

This implies that $E[Y-a] \ge E[Y-M]$ for a>M.

The case when a<M is obtained similarly and thus we got the desired result.