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(a)

(b)

By Kolmogorov SLLN if X;’s are i.i.d random variable and E(X) exist then 2» 2% E(X) ,
where S, is the partial sum of random variables

This result is true even if E(X) = oo or E(X) = —o0.

So if we consider ,

zi = h(z*,y;) = % where(X;,Y;) i fxv(.,.) so,Z]s are i.i.d also.
Since Var(h(X)) < oo so E(h(X))exist and we’ll show that E(Z;) = E(h(X))
So# — E(Z;) a.c

Now

_ fxy (2", yi)w(zi) o) ds
E(Zl) - / fXY(-'L'z',yz') fXY( zayz)d idy;

= /fXY(iU*,yi)/w(xi)d“’idyi
= /fXY(w*,yi)dyi = fx(z") (1)

Here X | Y =y ~ Ga(y,1l)andY ~ Exp(1) and fxy(z,y) = fx(z | y)fr(y) is the joint
density of X and Y Choose w(z) = fx y(z |y)

Steps are as follows:

(a) Draw y; fromExp(1)
(b) Draw z; from Ga(y;, 1)

Repeat the steps for n times and get
1Nv o fxy(e*y)w(z:)
n 2iel Ixv (z:i,y:)
Well, before starting the program i would like to explain a bit about the saddle point method
that have been implemented here. Since the marginal density of X has no explicit form, so
we’d use saddle point method.

as the estimate of marginal density of X at X = z*.

—z‘wy—l

fx(z) = /0 eriye*ydy

- /0 " explh(y | 2))dy (2)

where h(y | ) = —(z + y) + (y — 1)In(z) — InTy, for each zeDx = (0,0), Ymax mMaximises
the function h(y | ) and ymax satisfies the following equation

K(y|z)=lIn(z)—1— j—ylnI‘y =0, SO Ymax = Ymax(2) is a function of x , hence for each fixed
zeDx the above integral is approximated by

fx(z) ~ eh(ym‘m(ac))(W)U2

Following is the progarm in R

n < —100;y < —rexp(n,rate = 1);x < —rgamma(n,y, 1)



w < —dgamma(z,y,1,log = FALSE)

fzy < —dgamma(z,y,1,log = FALSE) x dexp(y,1,log = FALSE)
mdensity < — function(zl,y)

{f1 < —dgamma(zl,y,1,log = FALSFE)  dexp(y, 1,log = FALSE)
return(f1)}

zl < —0.01; A1 < —0.001

h < —w x mdensity(z1,y)/fry;e < —mean(h)

while(z1 < 10){h < —w * mdensity(z1,y)/fzy

e < —c(e, mean(h))

rl < —z1+ hl}

ffollowing is the estimate of exact density by Saddle point method
theta < —0.001;y < —1.00

h < ——vy+ (y—1)*log(theta) — lgamma(y)

hp < — — 1+ log(theta) — digamma(y)

hdp < — — trigamma(y)

itr < —exp(h) * sqrt(2 * pi/(—hdp))

incr.theta < —0.001

while(theta < 3.00){fcalculates the mode of of the function h

y < —theta + 0.01;incr < —0.001; eps < —0.00001

while(incr > eps){hp < — — 1 + log(theta) — digamma(y)

hdp < — — trigamma(y);incr < — — hp/hdp

y < —y +incr}

h < ——y+ (y—1)*log(theta) — lgamma(y); hdp < — — trigamma(y)
ffollowing is the approximation Of the integral

fi.e.the estimate of density at the point theta

gtheta < —exp(h) * ((2 * pi/(—hdp)) 5);itr < —c(itr, gtheta)

theta < —theta + incr.theta}

dl < —density(e[0 <= e < 1.8],bw = .001); d2 < —density(itr[0 <= itr < 1.8],bw = .06)
postseript(” MCMC1.ps”)

par(mfrow = ¢(2,2))

hist(e[e < 1.8],col =7 green”)

mitext(side = 3,line = 0.5, cex = 0.9,” Marginal Densityof X simulatedbymethod(a)”)
hist(itr[itr < 1.8],col ="red”)

mtext(side = 3,line = 0.5, cex = 0.9,” Exact M arginal Densityof X simulatedbysaddlepointmethod”)

plot(dlz,dly, col = 4, zlim = ¢(0.00,1.8), ylim = ¢(0,6.0), zlab = " Theestimateddensityof X” , type =
”l”)
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Figure 1: Histogram of marginal density of X
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Figure 2: Histogram of Marginal density of X
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Figure 3: Kernal density of X red line shows that by saddle point method and the blue line for

method (a)

lines(d2, col = 2)

dev.of f()
If we look at Figure 3 we’ll see that the density approximated by saddle point is right shifted
,and it’s not starting at zero, this unnatural behaviour says that there might not be any

saddle point to that density.
In the problem above we could choose the weight function w(z) infinite many ways, though

fxy(z*,y)w(z) o fxv (@, y)w(z) .o
) = (B Ixy(z,y) 2

we could choose w(z) optimally , optimal in the sense of minimum variance.

fxvy (2", y)w(z)
Var = FE
( fxv(z,y) ) fxv(z,y)
.ﬁXY(x*’y)u(x) 2 *)\2
E _
( fxy(z,y) \ = ()
fxy (@, y)w(z) 2 )2
> (F — 3
> (BT (1(e) ®)
In (6) equality holds only if I X’})Ei(g);‘;(z) = ¢ where c is some constant.
If we integrate out both sides w.r.t x we'd get
frv(e' ) [wie)ds
(4)

C/fXY(ﬂvay)diB =

= j{xf)/'(ﬂf*, Z/)



fXY ($* 7y)

so ¢ = Z3 v and hence w(z) = Ixy(zy)

fr ()
and this is the optimum choice of w(z).



