
Problem 4.51 Monte Carlo Statistical Methods,    HW                 by David Finlay 
 
Since matrix A is the limiting (stationary) matrix of P then 

∞→k
lim  Pk=A. 

The sum of each row of P or A is unity. 
 

(a) Assume that Za =0 ⇒ a-Pa+Aa = 0. But a ≠ 0 only if I=P-A. 
  But we know that (I-P-A)1=1-P1+A1=1-1+1= 1. 
Therefore, I-P+A≠0 ⇒ I≠P-A 
Therefore, a=0. 
So I-P+A is non-singular and it follows that [I-(P-A)]-1 exists. 
 
(b) Since Z=[I-(P-A)]-1 then Z-1 =I-P+A 
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 is valid. 

(c) Let us show that AZ=A. 
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So, AZ = A 
 
Since it is the rows of A that we multiply by the columns of Z, then for any row π 
of A, πZ = π. 
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So, PZ = ZP.  


