David Hitchcock
STA 6934
Problem 7.28

(Part 1) Y = X1 + XQ,Xl ~ Bin(nl,Ql),Xg ~ Bin(nQ,Gg)
Assume X and X, are independent. Then
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Where Cz = W

Letting y — x; = x5, we have
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Since Y7, Y5, Y3 independent,
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Fori=1,n1 =5,n, =5,y =7= X; € {2,3,4,5}
Fori=2,n=6,n,=4,y=5= X; € {1,2,3,4,5}
Fori=3,n1=4,n,=6,y=6= X; € {2,3,4,5}

So the 3 factors of the likelihood, given these data, are:
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After plugging in the values of Xy, for ¢ = 1,2,3, and calculating the
sums, omitting the gory details, we get for the likelihood:

L(Ql, 92) -

{10607 (1—61)°03+5007 (1—01)*03(1—0,)+5001 (1—0,)05(1—03)*+10676%(1—0,)} x
{60,(1 — 0,)°03 + 6007 (1 — 6,)*05(1 — 05)+
1200%(1 — 0,)202(1 — 05)* + 6007 (1 — 0,)%02(1 — 05)* + 665 (1 — 0;)(1 — 0)*} x
{(1 —0,)*05 + 240, (1 — 6,)°05(1 — 02)+
9007 (1 — 6,)%05(1 — 05)* 4+ 8003 (1 — 6,)05(1 — 05)° + 150103 (1 — 6,)*}
(Part 2) With a uniform prior 7(61,62) = 1 on (64, 6,), the posterior is

7T(01,92 | y> X L(91,92)7T(91,92) = L(Ql,gg).

The normalizing constant is
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which can be found via Maple to be 29993/7927920 = .00378321.

So the posterior density m(61,0; | y) is Z25207,(6,,0,). It is clear from
the form of L(6;,6:) that the conditional density of 6y, fi(6; | 62,y) is a
mixture of beta distributions. Similarly, the conditional density of 8, is also

a mixture of beta distributions. So the Gibbs sampler algorithm is:

e Start with arbitrary ((9@,9%0)), say, (0.5, 0.5).
o At step t + 1, generate HYH) ~ fl(QY) | 0£t),y).
e (Generate Hgt“) ~ f2(9£t) | GYH)?}’)-

e Repeat previous two steps for ¢t + 2,14+ 3, ...



(Part 3) The transformation of the parameters which may be consid-

ered is the logit transformation, so that the parameters are log 1%1
[

e This may help convergence. The posterior could then be expressed

as m(61,05 | y) x exp(alog 12191 + blog 1%2), where a and b were constants.

However, this would require that in its most simplified form, the likelihood
would contain exponents that “matched”, i.e., that 6; and 1 — ; had equal

and

log

exponents for 7 = 1,2. This requirement seems to be heavily dependent on
the observed data, so this transformation may not work in all cases.

Whether a Metropolis-Hastings algorithm would speed up convergence
would depend on whether the posterior distribution were bounded. If so, we
could use an independent Metropolis-Hastings algorithm that would achieve
uniform ergodicity and beat the Gibbs sampler. However, a 3-D plot of
the posterior using Maple shows that over the region 6; € [0,1],60, € [0, 1],
the posterior increases without bound at one of the boundaries. So uniform
ergodicity cannot be achieved.



